
SystemSens: A Tool for Monitoring Usage in Smartphone
Research Deployments

Hossein Falaki
CENS, UCLA

Ratul Mahajan
Microsoft Research

Deborah Estrin
CENS, UCLA

Abstract – By deploying several research applications, we
found that capturing usage context (e.g., CPU and memory)
is highly valuable for debugging and interpreting results,
even if that context information appears unrelated to the
application. We have developed a general tool called Sys-
temSens to help researchers capture usage context in their
deployments in an extendible way. This paper describes and
motivates the design choices underlying our tool and evalu-
ates its overheads in terms of phone resources and data.

Categories and Subject Descriptors
C.0 [System architectures]:

General Terms
Design

Keywords
Android, Smartphone, Deployment

1. INTRODUCTION
Using smartphones as a research platform is challenging

[9]. Several engineering barriers such as closed and frag-
mented platforms [10] make it hard to develop software that
works robustly on a range of devices. In addition, the di-
versity of usage patterns across users [6], makes it difficult
to debug unexpected behavior, interpret results, and draw
general conclusions.

Through deploying and supporting several research appli-
cations on smartphones, we find that capturing the broader
usage context greatly simplifies some of the challenges. That
is, research applications should not only capture informa-
tion of direct interest (e.g., location for an application inter-
ested in user mobility) but also other information on how the
smartphone is being used by the user (e.g., CPU, memory,
battery, etc.) By doing so, researchers can better understand
the environment their application operates in and interpret
and qualify the results more accurately. For instance, if an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiArch’11, June 28, 2011, Bethesda, Maryland, USA.
Copyright 2011 ACM 978-1-4503-0740-6/11/06 ...$10.00.

application interested in location information also captures
CPU and screen activity, it can better distinguish between
users that are sedentary versus those that leave their smart-
phones on the desk for long periods.

To help research applications capture usage context we
have developed a tool called SystemSens. It collects and logs
smartphone usage parameters in the wild in an unobtrusive,
and expandable way. SystemSens consists of an Android
logging client and a visualization web service. This tool has
been used in several deployments, where it has helped us
better understand users’ interactions with research applica-
tions [2, 8]. While the research supported by SystemSens
has been published and so has an analysis of usage pat-
terns [6], the focus of this paper is describing its design and
our experience with it.1

During the past two years SystemSens evolved through
three phases. Initially (v0) it was a simple battery and
screen status logging tool that kept the traces on the SD
card. The next major version of SystemSens (v1) recorded
rich operating system and network information such as packet
headers, and uploaded data in XML format to SensorBase [3].
This version used low-level Android libraries and could thus
run only on developer phones, which proved to be a signifi-
cant limitation because recruiting users became harder. In
the next version of SystemSens (v2), we dropped some of
the low-level logging capabilities to be able to run on stock
Android phones. From this version we also started upload-
ing data in JSON format to a collection and visualization
server. The current version of SystemSens (v3) allows other
(third-party) applications to log additional sensors through
SystemSens, thus offering an extensible platform for moni-
toring smartphones.

SystemSens is designed to be unobtrusive—it has no user
interface to minimize impact on usage, and it has a small
footprint in terms of memory, CPU, and energy consump-
tion. When having to choose between getting rich, low-level
information and portability, we chose portability to run on
any Android smartphone. Based on our experiments, we find
that event-based data logging is more efficient than periodic
polling. We also find that the primary energy cost of logging
relates to how often the device is woken up, and the marginal
cost of reading and storing additional sensory information
is not significant. Thus, the designer of tools like System-
Sens should optimize for maximizing sleeping and worry less
about the amount of information being collected and logged.

1The latest source code and API can be downloaded from
http://systemsens.cens.ucla.edu.

Figure 1: Snapshot of SystemSens battery graph of
a user who used a backup battery.

2. THE IMPORTANCE OF USAGE CONTEXT
In this section, we motivate the need for capturing broader

usage context when deploying research applications. During
the past two years, SystemSens was used in several deploy-
ments. During the summers of 2009 and 2010 it was used
by about 30 high school students who ran a range of partic-
ipatory sensing applications [2]. Within the past year, three
pilot deployments of the Andwellness project [8] had System-
Sens running on the smartphones of their users. These were
in addition to several internal studies. In all these cases we
found that data from SystemSens provided valuable insight
into the usage context, helped us optimize our applications
to consume less energy, and pointed us to external factors
that were affecting our studies, but we were not aware of.
We present a few examples.

2.1 Unexpected User Behavior
When using smartphones as a research platform, it is con-

venient to assume that the research application is the only
one on the subjects’ smartphones, because it is the only
application that researchers can control. This assumption
works most of the time, but when it does not, it is difficult
to identify the culprit.

For example, on a memory constrained device, seemingly
irrelevant issues may cause problems for a research appli-
cation. In Android, if a new application is launched when
there is not enough free memory, the system automatically
reclaims memory from other applications, even if that leads
to stopping some of the background services. In one inci-
dent, we had a location tracking application that was sup-
posed to continuously reside in memory and run. When test-
ing it in the lab, it presented the right behavior, and worked
as expected for most users. We experienced problems with
a few of our users, which we could not explain initially. But
after looking at memory and interaction traces from their
SystemSens logs, we found that those were active users with
high memory usage. In another deployment, some of our
users reported repeated phone reboots. Inspection of mem-
ory usage information from SystemSens showed that these
were heavy phone users, who continuously invoked differ-
ent applications, and therefore Android was under memory
pressure on those phones, and that version of Android on
that hardware platform resorts to rebooting the phone when
memory is scarce.

In every deployment of research software we have encoun-
tered a few users with other forms of unexpected behavior
that impacts the research applications. As an example, con-
sider the graph in Figure 1. It is a snapshot of the System-
Sens battery level graph over 24 hours for a user who used
two batteries. The sudden jump to 100% at about 9pm, indi-

Figure 2: Snapshot of a SystemSens graph showing
average CPU usage during one day for a user. Colors
represent CPU frequency.

Figure 3: Snapshot of a SystemSens graph showing
the number of cellular disconnection events per hour
during one day for a user with poor connectivity at
work.

cates switching batteries. We never considered this behavior
when developing and testing our log upload mechanism that
kicks in only when the phone is being charged. If battery
swap behavior were dominant, no data would get uploaded
(and we wouldn’t be able to distinguish between the appli-
cation not working and upload failures). Fortunately, this
user sometimes also charged her phone, which led only to
delayed uploads and not no uploads.

2.2 Debugging Battery Consumption
Using SystemSens in our deployments helped us better

understand the impact of our research applications on the
battery experience of our users. To do this, just monitoring
battery information is not enough. Very often when try-
ing to explain short battery life of the users we identified
problems in our software and fixed it, but in many cases
other information from SystemSens helped us identify ex-
ternal factors that were contributing to high battery drain.

For a few users, when inspecting SystemSens graphs we
encountered unusual CPU activity as shown in Figure 2. We
traced the problem to a bug in the GPS driver of that phone
model. Under specific conditions, the GPS driver consumed
100% of CPU time at the highest frequency until no juice
was left in the battery and the phone died.

For some other users we found an unusually high num-
ber of network disconnection events. Figure 3 is a snap-
shot of the SystemSens graph for the number of cellular
disconnections for one such user who worked in a building
with very poor wireless reception. SystemSens reported re-
peated disconnection events during day hours. When this
happened the cellular interface consumed significantly more
power, which resulted in much shorter battery life time.

In some other cases, we discovered that some of our users
had ruptured batteries. Their SystemSens battery graphs
showed that the batteries could not hold charge more than
two hours — an unusually short life for that phone model.

SystemSens

Service
/Proc info Screen Sensor

Event-based SensorsPolling Sensors

Memory info

SQLite
DB

SystemSens

DB Adaptor

SystemSens

Uploader

SystemSens

Server

HTTPS Post/JSON

Battery Sensor

Call Sensor

Message Sensor

.

.

.

Network info

WiFi Scan info

.

.

.

Android Smartphone

Figure 4: The architecture of the SystemSens client
application.

When we inspected the phones we found the batteries had
been ruptured.

In each of these instances, without access to the infor-
mation from SystemSens, we could not have identified the
real culprits. That would have led to unsatisfied users who
would have blamed our application for the drain and likely
uninstalled it.

3. ARCHITECTURE & DESIGN
In this section we introduce the architecture of System-

Sens. We highlight our design decisions and the reasons
behind them.

The principal goal that derives most of our design and im-
plementation decisions of SystemSens is to keep a low profile
in terms of resource consumption on the smartphone. There-
fore we have designed SystemSens to minimize the amount
of work on the client and delegate complexity to the server
and (offline) analysis. We will refer to this choice as the thin
client principle.

A second goal behind many design choices of SystemSens
is to keep the userbase as broad as possible. Most impor-
tantly we abandoned some of the features of version 1 to be
able to to run SystemSens on stock Android smartphones.

3.1 SystemSens Client
Figure 4 shows the architecture of the SystemSens client

application. The SystemSens client continuously runs as a
background Android service. We chose not to implement

any user interfaces to minimize impact on usage. The client
records and uploads a range of operating system events.
Each group of related OS information is recorded by a vir-
tual “sensor.” SystemSens supports two types of sensors.
Event-based sensors generate a log record whenever the cor-
responding state changes. For example, the screen sensor
records the state of the screen every time it turns on or off.
Polling sensors record the corresponding information at reg-
ular intervals. For example, every two minutes the average
CPU and memory usage are recorded. Table 1 is the list
of all the sensors currently supported by SystemSens. To
minimize energy consumption of SystemSens we prefer an
event-based sensor to a polling sensor to record the same
information.

The main SystemSens thread is responsible for recording
both event-based and polling sensors. All polling sensors
are queried at fixed intervals (currently set to two minutes
— we found this value good enough). In previous versions
we polled the sensors more aggressively when the user was
interacting with the phone. We found that variable intervals
make visualization and analysis of traces more difficult. To
improve the performance of the recording operation, all gen-
erated records are kept in a memory buffer that is flushed
to an SQLite database table on the phone regularly in a
separate thread.

The most energy and resource consuming task of the Sys-
temSens client is uploading the records to the server because
of high energy consumption associated with network trans-
mission. Since none of our research studies require real-time
data analysis, we designed the upload mechanism to upload
only when the phone is being charged. Most smartphone
users charge their phones overnight, which offers System-
Sens enough opportunity to upload all the data. In addi-
tion, with this policy upload happens at a time when users
tend to have zero interaction with their phones. This scheme
would fail if a user charges her phone while it is turned off,
or at a location with no network connectivity, or for users
with multiple batteries who charge them outside the phone.

When the upload thread starts, it reads the local database
in batches of 200 records, URL encodes them and posts them
to the SystemSens server over HTTPS. If the post request
succeeds, the records are deleted from the database with a
single range query. We decided not to authenticate clients
when uploading to be able to support users who are not
registered on the server and keep the potential user base
broad.

If for any reason, such as network disconnection, the server
does not confirm receiving a batch of data, they will not be
deleted. This approach further simplifies the logic of the
client, but may result in duplicate records in the database.
However, filtering duplicate records during analysis is trivial.

3.2 Data format
We chose the JSON format [1] for SystemSens data both

on the server and the client. In both client and server
databases JSON objects are stored as strings. This gives us
the flexibility to add new types of sensors and data record
types without the need to change database schema. In ad-
dition, handling JSON objects on Android is slightly more
efficient than XML [12].

Name Type Information Name Type Information
battery Event Battery level, voltage, temperature,

health and charging status
servicelog Polling Start and end time of background

services
call Event Voice call state activitylog Polling Start and end time of applications
cpu Polling Contents of /proc/cpuinfo callstate Event State of dialer application

celllocation Event ID of the connected cell tower meminfo Polling Contents of /proc/meminfo
dataconnection Event State of connection to data net-

works
memory Polling Android reported memory informa-

tion
servicestate Event Operator information netlog Polling Contents of /proc/net/dev
network Polling Traffic statistics per interface gpsstate Event State of Android GPS provider
wifiscan Polling Signal strength of visible WiFi APs message Event State of pending unread text mes-

sages
callforwarding Event State of call forwarding screen Event State of the screen
appresource Polling Memory and CPU usage of running

apps
netlocation Event Course (network based) location

systemsens Event Start time of the SystemSens appli-
cation

netiflog Polling Traffic statistics per applications

Table 1: List of default SystemSens virtual sensors

{’date’: ’2011-2-22 0:42:56’,

’time_stamp’: 1298364176416,

’type’: ’screen’,

’user’: ’355060041008892’,

’ver’: ’3.2’,

’data’: {’status’:’off’}}

Figure 5: Example of a SystemSens data record

Each record contains the IMEI2 or ESN3 of the phone to
identify the user, the timestamp in milliseconds in UTC, the
human readable date in phone local time zone, and the ver-
sion number of SystemSens. Each record contains a record
type field. The type value is used to parse the contents of
the data field which is itself a JSON object. Figure 5 is an
example of the JSON object generated by the screen sensor.

3.3 SystemSens Server
Our server configuration consists of a MySQL database on

a Linux machine running Apache. All server functionality
is implemented in Python.

When the server receives a post request from a client it
parses the JSON object and inserts the type, user, and date
records along with the original JSON string in a database
table. This table is indexed on time, user and date fields to
facilitate fast search queries on the records.

To preserve privacy all server functionalities that read the
data require authentication. Each login is paired with an
IMEI or ESN, therefore each user can only access her data.
The data is presented as a number of time graphs such as
those in Figures 1 and 3. Each graph has time as the X
axis and the user can control the range of the X axis using
time controls. Graphs can be generated for each data type
or combinations. Adding a new graph to the visualization
service is as simple as adding a new function.

3.4 External Sensors
Other applications can act as virtual sensors for System-

Sens, and log information through SystemSens by imple-
menting a simple AIDL interface. SystemSens will treat the
application as another virtual sensor and poll its values.

2International Mobile Equipment Identity
3Electronic Serial Number — equivalent to IMEI for CDMA
phones.

Most of our research applications use this feature to closely
monitor their resource consumption. Other research appli-
cations can use the SystemSens framework to upload and
monitor their data. For example, a sleep survey applica-
tion that uses accelerometer to detect when the user wakes
up and asks questions regarding quality of sleep logs its ac-
celerometer usage through SystemSens.

4. EVALUATION
In this section we present basic evaluation of the perfor-

mance of the SystemSens client. We summarize statistics
regarding the amount of data that SystemSens generates.
Next we evaluate the impact of running SystemSens on the
battery life of Android phones. CPU and memory usage of
SystemSens is insignificant. On a Samsung Galaxy S smart-
phone SystemSens on average consumes about 3% and 2.5%
of CPU time in user and kernel mode, respectively. It oc-
cupies about 4% and 3% of memory pages in private and
shared mode, respectively.

4.1 Data Size
The amount of data that SystemSens generates for each

user varies widely depending on usage and version of An-
droid. When there is more interaction, more event based
records are generated and on older versions of Android some
of the virtual sensors are not accessible. Figure 6 is the CDF
of the number of records per hour for two example users both
with high-end phones running Android 2.2. The median for
the first user is 408 and for the second user is 445.

The length of records primarily depends on their type.
Table 2 contains the median length of records of each type in
the SystemSens database. The median length of all records
is 159 characters and the mean is 362.

Based on these statistics and further inspection of the ex-
isting records in the current database (more than 10 mil-
lion records), we find that SystemSens on average generates
about 2.5 MB of data for each user per day. On the high
end this value is 5.5 MB and on the low end 0.75 MB.

4.2 Energy Consumption
To evaluate the energy consumption of SystemSens we

report the results of two types of experiments. First, we di-
rectly measure power consumption of a phone when running
SystemSens. Second, we measure the reduction in battery

0.
0

0.
3

0.
6

0.
9

0 500 1000 1500 2000 2500

Number of records

C
D

F

User 1
User 2

Figure 6: CDF of the number of records generated

per hour for two example users.

Type Length Type Length
activitylog 133 battery 224
callforwarding 153 call 145
celllocation 159 callstate 150
dataconnection 181 cpu 324
gpsstate 192 meminfo 459
message 146 memory 128
netiflog 314 netlog 2871
servicelog 449 screen 143
servicestate 235 network 149
appresource 4132 netlocation 223
systemsens 190 wifiscan 154

Table 2: Median length of different record types of

SystemSens.

life time of a phone when running our tool. Both of these
tests are common in the mobile computing community.

We placed a high frequency digital voltmeter in paral-
lel and a current meter in serial with the battery of a new
Samsung Galaxy S Android smartphone. We measured the
current and voltage across the battery with a frequency of
50 Hz. For each experiment we measured power consump-
tion for 10 minutes and report the mean power consumption
in Figure 7. No other third-party application was running
on the phone during these tests. We start measuring power
a few minutes after the screen turns off.

The average power consumption of the phone when no
background application is running is about 24 mW. When
SystemSens is running the phone consumes about 43 mW.
To put these numbers in perspective note that this device
consumes about 500 mW when the screen is on, and about
1500 mW when it rings to an incoming call.

When there is no interaction with the phone, SystemSens
consumes about 19 mW just for recording the polling sen-
sors. Each polling cycle consists of waking the phone up,
reading three files from /proc, querying some Android li-
braries for other polling sensors and finally writing the re-
sults, along with event-based sensor data received during
the past polling interval, in the local database. To measure
the power consumption associated with each of these steps
we performed three additional experiments. The results are
summarized in Figure 7. Reading three files from /proc con-
sumes about 4 mW. Reading the other polling sensors con-
sumes an additional 3 mW, and writing the data into the
database consumes about 2 mW on average. These results

24

43
41 39

36

ph
on

e

sy
ste

m
se

ns

w/o
 D

B

w/o
 /p

ro
c

w/o
 P

oll
ing

0
10

20
30

40
50

P
ow

er
 (

m
W

)

Figure 7: Power consumption of a Galaxy S smart-
phone with different versions of SystemSens.

0
25

50
75

10
0

0 4 8 12 16 20 24
Time (hour)

B
at

te
ry

 L
ev

el
 (

%
)

Default
SystemSens

Figure 8: Lines fitted to battery level readings show
the impact of running SystemSens on battery life of
an old Nexus One phone

suggest that when the phone is woken up the marginal cost
of polling additional sensors is insignificant. In addition,
writing data into the persistent storage is not expensive in
terms of power. Therefore, the most effective way of re-
ducing energy consumption of SystemSens is increasing the
polling interval.

Calculating battery lifetime using the declared battery ca-
pacity and measured power is inaccurate because it cannot
account for many external factors such as variations in bat-
tery voltage [11] and user interactions. To get a realistic
estimation of impact on battery life we performed our sec-
ond experiment. We implemented a simple application that
continuously records battery levels. We installed this ap-
plication on a Nexus One with a full battery. We left the
phone on a shelf until its battery died. We repeated this
experiment with SystemSens and placed the phone in the
exact same location. Figure 8 shows the recorded battery
levels and the least squared fitted lines for both cases. It
shows that SystemSens reduced the battery lifetime of this
phone by about two hours when there is no user interaction.
Note that the impact is different on different hardware plat-
forms. We chose the used Nexus One rather than the new
Galaxy S, because its shorter battery life made our experi-
ments shorter.

Both these experiments capture worst case scenarios, be-
cause when a phone is actively used some of the polling
events occur when the phone is already powered up by us-

age. By investigating SystemSens logs from many users, we
find that when the phone is not being charged, between 8%
to 20% of polling events happen when the screen is on or
within 30 seconds (sleep timeout) after the screen is turned
off. We found the distribution of this ratio robust to the
exact choice of sleep timeout value. Furthermore, based on
anecdotal evidence from our deployments, the impact of Sys-
temSens on battery life of actively used smartphones does
not disturb normal day to day usage of the phone.

5. RELATED WORK
MyExperience [7] is one of the earliest tools built to mea-

sure device usage and context information in situ. It runs on
Windows Mobile smartphones and supports active context-
triggered experience sampling. SystemSens is designed and
implemented for Android smartphones. However, a Win-
dows Mobile port of an early version of SystemSens exists
[5]. Unlike MyExperience, SystemSens is a passive logging
tool — we chose not to engage with users to minimize im-
pact on usage. SystemSens users are able to tag interesting
phenomena regarding their experience on the web interface.

LiveLab [4] is a similar research tool implemented for the
iPhone platform. It measures usage and different aspects
of wireless network performance. A key feature of LiveLab
is “in-field programmability.” The ability to update a log-
ging tool in the field is critical in any real deployment. We
realized this need and implemented a separate tool named
CENS Updater that can update not only SystemSens but
also all other CENS applications in the field. LiveLab is
built to run on “jailbroken” iPhones and is capable of col-
lecting a wide range of OS and network related information.
We decided to limit the sensing capabilities of SystemSens,
but to keep the potential user base as wide as possible by
implementing it to run stock Android smartphones.

Both MyExperience and LiveLab focus on data collection
on the phone. SystemSens is an end-to-end system that in-
cludes a web-based visualization and authentication service
to provide feedback to users while preserving their privacy.
In addition, the web interface greatly facilitate browsing and
interpreting the data for researchers.

6. CONCLUSION
We have been developing and using SystemSens as a tool

to capture usage and context related parameters in our re-
search for the past two years. SystemSens has become a
robust logging tool with a portable visualization server im-
plementation. It is now an integral part of our research
deployments. We released the source code 4 for other inter-
ested researchers.

In future we will continue improving SystemSens. Specif-
ically we will address the potential upload problems by in-
cluding checks to trigger opportunistic uploads when the
default scheme fails repeatedly. We will also include mech-
anisms for third-party applications to log information in an
event driven manner.

7. ACKNOWLEDGEMENT
We are grateful to the members of the Center For Em-

bedded Networked Sensing that helped us with several de-
ployments of SystemSens: Nithya Ramanathan, John Jenk-

4Available at http://systemsens.cens.ucla.edu/

ins, Brent Longstaff, Kannan Parameswaran, Betta Daw-
son, Mohamad Monibi, and Joshua Selsky. Prof. Ramesh
Govindan provided valuable advice to this project. Zainul
Charbiwala helped us with energy measurements. We thank
them all.

8. REFERENCES
[1] Javascript object notation. http://www.json.org/.

[2] J. Burke, D. Estrin, M. Hansen, A. Parker,
N. Ramanathan, S. Reddy, and M.B. Srivastava.
Participatory sensing. In World Sensor Web
Workshop, 2006.

[3] K. Chang, N. Yau, M. Hansen, and D. Estrin.
SensorBase.org – A Centralized Repository to Slog
Sensor Network Data. In Technical Report. Center for
Embedded Network Sensing, 2006.

[4] AR Clayton Shepard, C. Tossell, L. Zhong, and P.K.
LiveLab. Measuring Wireless Networks and
Smartphone Users in the Field. HotMetrics, 2010.

[5] Hossein Falaki, Dimitrios Lymberopoulos, Ratul
Mahajan, Srikanth Kandula, and Deborah Estrin. A
first look at traffic on smartphones. In IMC, 2010.

[6] Hossein Falaki, Ratul Mahajan, Srikanth Kandula,
Dimitrios Lymberopoulos, Ramesh Govindan, and
Deborah Estrin. Diversity in smartphone usage. In
MobiSys, 2010.

[7] J. Froehlich, M.Y. Chen, S. Consolvo, B. Harrison,
and J.A. Landay. MyExperience: a system for in situ
tracing and capturing of user feedback on mobile
phones. In MobiSys, 2007.

[8] J. Hicks, N. Ramanathan, D. Kim, M. Monibi,
J. Selsky, M. Hansen, and D. Estrin. Andwellness: An
open mobile system for activity and experience
sampling. In Wireless Health 2010, 2010.

[9] S. Keshav, Y. Chawathe, M. Chen, Y. Zhang, and
A. Wolman. Cell phones as a research platform. In
MobiSys Panel, 2007.

[10] E. Oliver. A survey of platforms for mobile networks
research. ACM MCCR, 12(4), 2009.

[11] R. Rao, S. Vrudhula, and D.N. Rakhmatov. Battery
modeling for energy aware system design. IEEE
Computer, 36(12), 2003.

[12] J. Sharkey. Coding for life – battery life, that is.
Google IO Developer Conference, 2009.

