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Abstract—Large and bright screens on today’s mobile phones
account for significant energy demand on phones’ batteries [14].
In this paper we propose an algorithm that, given the energy
profile of the screen, finds the optimal schedule to minimize screen
energy dissipation when the phone is idle. We profile the screen
energy consumption of two popular smartphones, Nokia N95 and
E71, through carefully designed micro-benchmarks. Our energy
measurement results suggest that the default screen schedules on
these phones are far from optimal - on average our algorithm
performs 50% better than default. We also find that on the E71
not using the dim state of the screen and directly turning it off
is more energy-efficient.

We improve the performance of our screen scheduling algo-
rithm by considering the history of each user’s interaction with
his/her phone. We study the interaction patterns of six volunteers
with their smartphones. The results suggest that the distribution
of the length of idle times for each user does not change over time.
Therefore, the screen scheduler can learn this distribution during
a learning phase and use it to improve screen management.
We show that the probabilistic algorithm can further reduce
the screen energy consumption by up to 60% compared to the
deterministic algorithm.

Index Terms—Mobile Phones, Screen, Dynamic Power Man-
agement

I. I NTRODUCTION

New functionalities are being added to smartphones at
an increasing rate. These include addition of new hardware
capabilities, and introduction of new software features. These
feature-rich phones are usually referred to assmartphones.

However, the increases in battery capacity have not matched
increases in functionality. In fact, battery capacities have not
been growing more than 10 percent every year, whereas the
number of features and applications, and therefore power
consumption demand, is growing at a significantly higher
rate [14]. As a result, increasingly more powerful processors,
multiple wireless interfaces and larger and brighter screens are
making phone batteries last shorter than they used to.

The current technology situation makes power management
a critical problem on smartphones. Most of the existing
research on this topic treat smartphones and traditional cell
phones as embedded systems with several components. There
has been considerable work on reducing the energy consump-
tion of each component and discovering when they are idle to

power them down or turn them off if possible [6]. Dynamically
turning off unused components is referred to asdynamic power
management (DPM).

We argue that dynamic power management for different
components of mobile phones can be improved by considering
the usage history of the phone. Mobile phones differ from
embedded systems because human users directly interact with
them. In this work, we demonstrates how dynamic power
management can be improved by considering usage history of
the phone user. We use the mobile phone screen and backlight
as an example, and propose an energy management strategy
that uses the history of user interactions as a priori to achieve
better energy saving.

Current mobile phones turn off the screen backlight after a
fixed interval that is configurable by the phone user. We show
how the optimal value of this interval can be derived from the
user’s past history of interactions with the phone.

In Section II we show why scheduling the phone screen
is not a trivial problem. We model the problem formally
in Section III. Section IV details an algorithm that given
the energy profile of the screen and the user’s past usage
history finds the optimal schedule for the backlight. To evalu-
ate the performance of the proposed algorithms we conduct
experiments that are presented in Section V. We evaluate
the performance of this algorithm using our user traces and
compare it with the existing power management strategy in
Section VI. In Section VII we present the related work. Finally
Section VIII concludes the paper and outlines possible future
work.

II. T HE SCREEN SCHEDULING PROBLEM

Large screens have become a de facto requirement for
today’s smartphones. Large and bright screens account for
a significant portion of the energy demand on the phones’
batteries [14]. To conserve energy mobile phones turn off their
screens when they are idle. On all current smartphones a static
timeout value is used to decide when to turn off the screen;
most often the user can configure this timeout as part of the
phone settings.

In this section we argue why finding the optimal value of
the screen sleep timeout is not a trivial decision. First we will
show why a universal predefined value is not suitable. Second,
we demonstrate that expecting the user to find the right value
for himself/herself is also not realistic.



Fig. 1. Picture of a Nokia N95 (left) and a Nokia E71 (right).

State Description
ON LCD and backlight are on
DIM LCD is on, but the backlight is off
OFF LCD and backlight are off

TABLE I
THREE STATES OFNOKIA SMARTPHONE SCREENS

We performed micro-benchmarks on two popular smart-
phones: Nokia N95 and E71 phones (Figure 1). The screens on
these phones have three power states listed in Table I. Figure
2 plots the average power consumption of both smartphones
measured 10 times using the Nokia Energy Profiler tool [5].

In Figure 2, one minute into the experiment the user touches
the keyboard of the E71 and the phone turns on its screen and
backlight as as a response. 15 seconds after the phone is idle,
the backlight turns off (the phone enters the DIM state), and
30 seconds later the LCD is turned off too (the OFF state).
The N95 experiment follows a similar scenario, with slight
shifts in time.

The spikes in power consumption at times, when the screen
state changes, indicate that each state transition incurs afixed
energy cost. We argue that, because of these fixed costs,
finding the optimal timeout to change states is non-trivial.
Consider a simple situation where a naı̈ve user sets the timeout
value to one second.1 If on average the userthink time is
1.5 second,s the backlight will turn off right before the next
user interaction happens. The user interaction will turn onthe
screen again and so on. If this scenario happens too often,
the phone will end up consuming more energy on the screen
compared to the case where the backlight timeout is longer.

This simple example shows why the shorter timeout value
is not necessarily the better choice in terms of energy con-
sumption. It also demonstrates how user interaction patterns
affect the optimal choice of screen timeout settings. In this
paper we will study this problem quantitatively, but first we
need a formal model of the problem.

1Interestingly, theNokia Green Phoneapplication urges users ”set the
backlight time out to as little as 1 second” to maximize powersaving.

Current State Run. cost Next state Trans. cost

ON R1

DIM C1

OFF C2

DIM R2

ON C3

OFF C4

OFF R3

ON C5

DIM C6

TABLE II
L IST OF POSSIBLE COSTS ASSOCIATED WITH THE SCREEN

ONMLHIJKON

−→
I ,C1 --

−→
E,C2

��
ONMLHIJKDIM

−→
I ,C4 ,,

−→
E,C3ii

ONMLHIJKOFF

−→
E,C5

^^

Fig. 3. All possible state transitions in the screen. Characters with arrows
indicate the cause of the transition. E represents an event,I and represents
being idle.

III. SYSTEM MODELING

In this section we present a formal model of the screen
power management problem which is partially based on
the theoretical modeling introduced by Augustine, Irani, and
Swamy [1]. We simplify that model and use it in a real setting.

Table II summarizes the running and fixed costs associated
with each screen state. We assume that the screen power
consumption is fixed in each state, and there is a fixed cost
associated with each state transition. We will verify these
assumptions in Section V.

From the modeling perspective it does not matter whether
a fixed cost is incurred when entering a state or when leaving
it. To correctly associate fixed costs to state transitions,we
need to identify all legitimate state transitions, becausein a
real system arbitrary state transitions are not possible. Figure 3
demonstrates all possible state transitions of the screen.There
are two characters on each transition arrow. The first character
indicates the cause of the transition, that could be an idle
period (

−→
I ) or an event (

−→
E ). The second character is the fixed

cost associated with the transition.
Based on our observations we know that the phone can serve

the user only when the screen is ON. Therefore any event (e.g.,
user interaction) will turn the screen ON. On the other hand,
the screen has two possible power saving states. When the
screen is idle, it can either directly turn OFF, or turn DIM
and then OFF. These two possible scenarios as illustrated in
Figure 4. We will refer to the first scenario in this figure, that
takes advantage of DIM, as thethree-state scenario. We will
call the alternate scenario thetwo-state scenario.

Figure 5 plots the energy consumed by the screen in each of
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Fig. 2. Energy consumption of two smartphones in three different states of their screens: Nokia E71 (left), and Nokia N95(right)

Cause First Scenario: Using DIM

Event

OFF ON//
C5

DIM ON//
C3

Idle ON DIM//
C1

OFF//
C4

Second Scenario: Avoiding DIM

OFF ON//
C5

ON OFF//
C2

Fig. 4. State transitions in each screen management scenario. The label on each arrow represents the fixed cost associated with the transition.

the three states as a function of the length of the idle periodin
a hypothetical setting. The three states of the phone screenare
represented with three lines. The slope of each line represents
the energy consumption rate (power consumption) in that state.
The intercept represents the fixed energy cost associated with
that state. In this model, initially proposed by Augustine,et
al. [1], the fixed costs relative to the next most active stateare
used. Thus, the line that representsON has zero intercept and
its slope isR1.

When the screen scheduling algorithm decides to make the
screen DIM, it should anticipate the fixed cost of entering this
state and also the cost of leaving it when a new event arrives.
Therefore the intercept of the line representing DIM in Figure
5 is CDIM,ON = C1 + C3, and its slope isR2.

Similarly the fixed cost associated with OFF is the sum of
fixed costs of entering OFF from the previous state and the
fixed cost of entering ON from OFF. Depending on whether
the system is operating in the three-state or the two-state
scenario, the previous state to OFF is DIM or ON. Therefore,
the intercept of the line representing OFF isCOFF,DIM =
C4 + C5 or COFF,ON = C2 + C5, respectively. The slope of
this line isR3.
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Fig. 5. Energy consumed by the screen in each possible state as a function
of the length of idle time.



IV. A LGORITHM DESIGN

In this section we present an on-line algorithm that gives
the optimal schedule for screen management based on the
power consumption profile of the screen. We then improve this
algorithm to take into account the distribution of the inputto
achieve better performance in terms of energy consumption.

We define a strategy or schedule for screen management as
(T1, T2), whereT1 and T2 are the timeouts for turning the
screen DIM and OFF, when the phone is idle. IfT1 ≥ T2, the
schedule is essentially not using the DIM state of the screen
which means the two-state scenario is being used.

The problem of finding the optimal strategy is an on-line
problem, because the scheduler does not have the input in
advance. A common metric to evaluate the performance of an
on-line algorithm is itscompetitive ratio. Competitive ratio is
the ratio of the worst case cost incurred by the algorithm to the
cost of the optimal off-line algorithm that knows the future.

The algorithms that follow, effectively make two decisions.
First they choose the better scenario, and second, they find the
best timeout value(s) of that scenario.

A. Deterministic Algorithm

If the fixed costs are additive (COFF,ON = COFF,DIM +
CDIM,ON ), the optimal deterministic on-line strategy, called
Lower Envelope Algorithm (LEA), follows the lower envelope
curve of Figure 5 (plotted in solid lines) at any time. The
schedule resulted from their algorithm is(t1, t2). wheret1 is
the first time that the cost of ON exceeds DIM, andt2 is when
keeping the screen DIM costs more than transitioning to OFF.
Irani et al. [8] first proposed this algorithm and proved thatit
is 2-competitive.

Augustine et al. [1] consider the general case where the
fixed transition costs are not additive. They give an algorithm
that efficiently enumerates all possible strategies and finds the
one with the lowest competitive ratio. They prove that the
worst case competitive ratio of this algorithm is3+2

√
2. The

number of states in the screen scheduling problem is limitedto
three, therefor we do not need to run their dynamic programing
algorithm to decide which of the two possible strategies has
a better competitive ratio. The algorithm in Figure 6 simply
compares the worst case cost of the two possible schedules
given the cost values of Table II and returns the schedule that
has the lowest cost.

B. Probabilistic Algorithm

If the distribution of the length of idle times is known, the
on-line algorithm can be augmented to optimize the expected
cost of the screen schedule instead of the worst case cost.

Assume that the length of the next user idle time is a random
variable that follows a known distribution,π(t). If we use T as
the timeout value to turn the screen OFF, the expected energy
cost of the two-state scenario is:

Eπ(t)(Cost1(T )) =

∫ T

0

(R1t)π(t)dt

+

∫

∞

T

(

R1T + R3(t − T ) + CON,OFF

)

π(t)dt (1)

t′ = C2+C5

R1

t1 = C1+C3

R1−R2

t2 = C4+C5−C1−C3

R2−R3

Cost1 = t′R1 + (C2 + C5)
Cost2 = t1R1 + (t2 − t1)R2 + (C1 + C3) + (C4 + C5)
if Cost2 < Cost1 then

return(t1, t2)
else

return(t′, t′)
end if

Fig. 6. Deterministic algorithm to find the optimal screen schedule

Obviously,T can be selected to minimize the expected cost.
Augustine et al. [1] proved that in the multi-state scenario

the optimal transition times are the optimal transition times of
the simplified two-state systems. Therefore the optimal time
to transition from ON to DIM in the three-state scenario isT1

that minimizes the following expected cost.

Eπ(t)(Cost′2(T1)) =

∫ T1

0

(R1t)π(t)dt

+

∫

∞

T1

(

R1T1 + R2(t − T1) + CON,DIM

)

π(t)dt (2)

And the optimalT2 to transition form DIM to OFF is one that
minimizes the following:

Eπ(t)(Cost′′2 (T2)) =

∫ T2

0

(R2t)π(t)dt

+

∫

∞

T2

(

R2T2 + R3(t − T2) + CDIM,OFF

)

π(t)dt

(3)

The expected cost of the three-state strategy is neither
E(Cost′1) nor E(Cost′′2 ). Once the optimalT1 and T2 that
minimize E(Cost′1) and E(Cost′2) are determined, we can
compute the expected cost of the three state strategy as
following:

Eπ(t)(Cost2(T1, T2)) =

∫ T1

0

(R1t)π(t)dt

+

∫ T2

T1

(

R1T1 + R2(t − T1) + CON,DIM

)

π(t)dt

+

∫

∞

T2

(

R1T1 + R2(T2 − T1) + CON,DIM

+ CDIM,OFF

)

π(t)dt (4)

The algorithm in Figure 7 decides which scenario gives the
optimal screen schedule and returns the optimal schedule.

V. M EASUREMENTS

To evaluate the performance of the proposed algorithms we
performed measurements on real phones and with real users.
In this section we present the methodology and results of our
measurements.



t′ = arg minEπ(t)(Cost1(T ))
t1 = argmin Eπ(t)(Cost′1(T1))
t2 = argmin Eπ(t)(Cost′′1 (T2))
Cost1 = Eπ(t)(Cost1(t

′))
Cost2 = Eπ(t)(Cost2(t1, t2))
if Cost2 < Cost1 then

return(t1, t2)
else

return(t′, t′)
end if

Fig. 7. Probabilistic algorithm to find the optimal screen schedule

State E71 N95
R1 (ON) 0.132 (W) 0.081 (W)
R2 (DIM) 0.011 (W) 0.011 (W)
R3 (OFF) 0.000 (W) 0.000 (W)

TABLE III
POWER CONSUMPTION OF SCREEN STATES OF TWONOKIA SMARTPHONES

A. Energy Profiling

We performed micro-benchmarks on two popular smart-
phones, Nokia N95 and E71. On each smartphone we installed
the Nokia Energy Profiler [5] and ran the benchmarks while
the profiler was running. We repeated each benchmark 10
times. In this section we report the average energy consump-
tion across the 10 measurements. The average of measured
energy values are plotted in Figures 8 and 9 along with error
bars.

You can see three plots in each of these two figures. Each
plot is the result of a different micro-benchmark designed to
measure specific fixed costs:

1) The phone is left idle until the screen turns DIM and
then OFF.

2) The phone s configured to avoid the DIM sate. It s left
to turn the screen OFF, then we press a button to turn
the screen ON and wait until it turns off again.

3) The phone s configured to avoid OFF, and only turn
DIM. It is left to turn DIM, then we press a button to
turn the screen ON and wait until it turned DIM again.

We have labeled the power consumption spikes that indicate
fixed energy costs associated with state transitions in Figures
8 and 9 with the corresponding names from Table II. We were
unable to design a benchmark to measureC6, but fortunately
this cost is not used in any of the algorithms in Section IV.

Table III summarizes the average power consumption of the
screen in each state. We subtract the base power consumption
(device power consumption when the screen is OFF) from the
total consumption values to get the power that is consumed
only by the screen. Table IV summarizes the average fixed
transition costs measured for each smartphone.

B. User Study

We gave four N95 and two E71 Nokia smartphones to
six volunteers. The subjects agreed to use these handsets as

Fixed cost E71 N95
C1 0.248 0.049
C2 0.284 0.243
C3 0.236 0.174
C4 0.119 0.096
C5 0.262 0.360
CDIM,ON 0.484 0.223
COF F,DIM 0.381 0.456
COF F,ON 0.546 0.603

TABLE IV
FIXED ENERGY INCURRED DURING SCREEN STATE TRANSITIONS OF TWO

NOKIA SMARTPHONES

their daily phones. We installed theNokia Simple Context
(NSC) collectoron these phones, and configured it to sample
system information every 10 seconds. The system module of
NSC, among other system level information, logs the screen
inactive timer. We use the value of this timer to infer the
length of screen inactivity times. N95 users participated in this
experiment for four weeks, but E71 users continued collecting
data beyond the end of one month.

Figure 10 plots the cumulative distribution functions of
the length of inactivity times of two N95 users and the two
E71 users. Based on the semi-log plots of the complementary
cumulative distribution functions in Figure 11 we conjecture
that inactivity times of smartphone users follow truncated
exponential distributions. However, the algorithm in Figure
7 is agnostic to the type of the distribution of idle times.
But it requires the distribution to be fixed over time (i.e., the
idle times be astationary process). A stationary process is
a stochastic process whose joint probability distributiondoes
not change over time or space.

We hypothesize that the length of user inactivity times on
their phones is a stationary process. We used the KPSS test for
stationarity [12] to test our hypothesis. The KPSS test assumes
the following model:

xt = rt + βt + ǫt

Where rt is a random walk (i.e.,rt = rt−1 + ut, and
ut ∼ i.i.d N(0, σ2

u)). βt is a deterministic trend, andǫt is a
stationary error. In this model, to test ifxt is a level stationary
process, that is the series is stationary around a fixed level, the
null hypothesis isβ = 0.

The KPSS test statistic is:

KPSS =

∑N

t=1 St

N2σ̂2
(5)

Where St =
∑t

j=1(xt − x) and σ̂2 is an estimator of the
long-run variance of(xt − x).

According to Kwiatkowski et al. [12] under the null hypoth-
esis of level stationarity:

KPSS →
∫ 1

0

V1(r)
2dr (6)

whereV1(r) is a Brownian bridge (i.e., assuming thatB(r) is
a Brownian motion process onr ∈ [0, 1], V1(r) = B(r) −
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Fig. 8. Profiling the power consumption of an E71 smartphone screen in three different states
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Fig. 9. Profiling the power consumption of an N95 smartphone screen in three different states
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Fig. 10. CDF of the length of inactivity times six mobile users
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Fig. 11. Semi-log plot of the CCDF of the length of inactivitytimes



Upper tail percentiles
Distribution 0.1 0.05 0.025 0.01

KPSS 0.347 0.463 0.574 0.739

TABLE V
UPPER TAIL CRITICAL VALUES FOR THEKPSSSTATISTIC ASYMPTOTIC

DISTRIBUTION

user KPSS level p-value
E71-1 0.428 0.06
E71-2 0.348 0.09
N95-1 0.432 0.06
N95-2 0.725 0.01
N95-3 0.239 > 0.1
N95-4 0.652 0.01

TABLE VI
KPSSTEST FOR STATIONARITY RESULTS

rB(1)). Table V lists the upper tail critical values of the
asymptotic distribution of the KPSS statistic.

Intuitively, a smaller KPSS value indicates higher station-
arity. As an example the KPSS value of a sequence of 10,000
i.i.d samples fromNormal(0,1) is 0.054. The KPSS test
implementation in R also reports thep-value for the given
KPSS value. It approximates the p-values by interpolation
from a simulated table of critical values. p-values larger than
0.1 are typically considered to be non-significant and p-values
smaller than 0.01 are regarded highly significant.

Table VI summarizes the results of the KPSS test on all our
users’ data. The p-value is greater than0.1 only for one user
2. We can conclude that for five out of six users the length of
idle times are stationary distributions with high confidence.

Our explanation for the lack of confidence in stationarity of
the distribution of idle times of user N95-3 is that this user
did not effectively use the phone as his/her primary phone and
used it along with his/her personal phone.

VI. EVALUATION

In this section we evaluate the performance of the proposed
algorithms in IV using our measurement results. For all the
schedules that will be presented we round the timeout valuesto
the second which is the maximum granularity of our phones’
screen timeout setting.

A. Deterministic Schedules

Figure 12 plots the lower energy envelope for both phones
using the results of our energy profiling. An interesting obser-
vation is that on E71 the lower envelop does not include the
DIM line. This is intuitively why the algorithm in Figure 6
does not use the DIM state and returns(4, 4). Four seconds
is the time when the lines representing OFF (with intercept
COFF,ON ) and ON intersect. For N95 Algorithm 6 returns
(3, 20) as the optimal schedule.

2The KPSS.test() implementation in R does not report the p-value when it
is greater than 0.1

Setting Phone T1 T2

Factory Setting
E71 25 45
N95 10 60

Deterministic Optimal E71 4 4
N95 3 20

TABLE VII
DEFAULT AND DETERMINISTIC OPTIMAL SCREEN SCHEDULES FORE71

AND N95

User T E[Cost1] T1 T1 E[Cost2]
E71-1 1 0.140 1 10 0.173
E71-2 1 0.138 1 9 0.181
N95-1 1 0.138 1 8 0.134
N95-2 5 0.126 1 13 0.110
N95-3 2 0.128 1 21 0.108
N95-4 3 0.132 1 24 0.113

TABLE VIII
COMPARING THE EXPECTED COST OF THE TWO-STATE AND THREE-STATE

SCHEDULES FOR EACH USER.

B. Probabilistic Schedules

We divide the traces from each user into two sets of equal
size. We use the first set astraining dataand the second set as
testing data. We use the training data to compute the histogram
of the length of idle times and use this histogram in Algorithm
7 to numerically computet′, t1, t2 and the corresponding
values ofCost1 andCost2. These values are listed in Table
VIII. For E71 users we use the energy costs of the E71 phone,
and similarly for N95 users. We do this, because we observed
that the form factor of a phone affects its usage. For example,
E71 users interact with their phones more often that N95 users.

The result of Algorithm 7 for each user based on his/her
phone is summarized in Table IX. You can see that similar to
the deterministic algorithm, the probabilistic algorithmdecides
not to use the DIM state of the E71 screen. Also as a result
of the short tail of the probability distribution of the length of
idle times, the probabilistic algorithm chooses shorter timeout
values compared to the deterministic algorithm.

C. Performance Evaluation

We implemented a trace-based simulator, namedScreenSim,
to compare the performance of the three screen schedules:
default, deterministic, and probabilistic. Given a screenman-
agement schedule, the energy profile of a mobile phone screen,
and the usage history of a user, ScreenSim computes the total

User T1 T1

E71-1 1 1
E71-2 1 1
N95-1 1 8
N95-2 1 13
N95-3 1 21
N95-4 1 24

TABLE IX
OPTIMAL PROBABILISTIC SCHEDULES FOR EACH USER
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Fig. 12. Screen energy lower envelop for the deterministic algorithm

user Default Deterministic Opt. Probabilistic Opt
E71-1 931.611±5.572 317.934±3.255 223.672±2.730
E71-2 305.51±3.567 97.731±1.976 61.528±1.601
N95-1 94.578±2.292 55.052±1.748 45.069±1.582
N95-2 64.496±3.035 43.316±2.326 36.640±2.140
N95-3 72.453±2.127 45.661±1.689 42.126±1.622
N95-4 30.799±3.204 18.072±2.454 17.298±2.401

TABLE X
AVERAGE DAILY ENERGY DISSIPATION OF THE SCREEN BY THREE SCREEN

SCHEDULES FOR EACH USER

energy consumed by the screen.
Table X lists the average and standard deviation of the daily

energy consumed by each user when using each of the three
screen schedules. The average is computed over multiple days
of usage. Figure 13 plots the ratio of energy consumed by
the deterministic and probabilistic schedules to the default
schedule energy consumption for each user.

The deterministic schedule results in 50% average energy
reduction compared to the default factory setting. The energy
reduction resulting from the probabilistic schedules thattake
into account the usage pattern of each user is about 40% on
average.

Figure 14 plots the histogram of the ratio of energy con-
sumed by the probabilistic schedule of each user to the
deterministic schedule. The average ratio is about 80%. The
improvement resulted from the probabilistic schedule is min-
imal for users N95-3 and N95-4. These two users have the
lowest number of total interactions, therefore the probabilistic
algorithm does not have much input to work with. In other
words, because of the infrequent interactions, the probabilistic
schedule is close to the deterministic.

VII. R ELATED WORK

Prior to the introduction of on-line DPM algorithms, DPM
solutions have been following either a predictive approachor
a stochastic control approach [2]. The predictive approaches
attempt to predict the length of the next idle period using past
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history of the system. Based on this prediction, the power
management system chooses the optimal power state switching
threshold. The prediction algorithm is either adaptive or non-
adaptive. Non-adaptive predictive algorithms set the idleness
threshold once and forever, whereas adaptive algorithms are
affected by the observed input patterns [7] [3] [4] [18] [13]. All
these schemes make a single prediction and pay the overhead
if the actual idle time is different from the predicted value.

Stochastic approaches [15] [17] [16] make assumptions
about the probability distribution of the job request patterns
and formulate the DPM problem as an stochastic optimization
problem. They are highly sensitive to the underlying assump-
tions, and proving any theoretical bounds on their performance
is difficult.

Recently researchers have studied DPM as an on-line prob-
lem [1] [8] [9]. Similar to any on-line algorithm, the power
management system should decide about resource allocation
before knowing all the input (i.e. the length of the idle period).
On-line algorithms are analyzed based on theircompetitive
ratio; the ratio of the on-line algorithm cost, to the cost of the
optimal off-line algorithm.

The same general setting as the Dynamic Power Manage-
ment problem, although simpler, exists in many other areas
of Computer Science. In a shared memory multiprocessing
system, a process that is waiting for a locked resource must
decide whether to spin or lock [10]. A gateway between
a connection-oriented network and a connectionless network
should decide when to drop a connection [11]. These are two-
state examples of the same problem for which there is a 2-
competitive deterministic on-line algorithm. When the input
follows a known probability distribution the on-line algorithm
can perform better and achievee/(e−1) expected competitive
ratio.

VIII. C ONCLUSIONS ANDFUTURE WORK

In this paper we study optimal screen management on
mobile phones. We formally model the problem and identify
the costs associated with a mobile phone screen. We profile
the energy consumption of two popular smartphones (N95
and E71) through carefully designed micro-benchmarks. We
also perform a user study with six subjects. Our results show
that users’ interaction with their phones is not arbitrary -the
distribution of the length of idle times of each user does not
change over time. We propose two algorithms to find effective
values for turning the screen dim and off when the phone is
idle. Our deterministic algorithm makes no assumptions about
the length of idle times. The probabilistic algorithm improves
the deterministic result by considering the distribution of the
length user idle times.

We discover that on the E71 turning the screen dim is
non-optimal in terms of energy consumption. We evaluate the
performance of our algorithms using trace-based simulation.
The energy consumption of the deterministic schedule is on
average 50% of the default schedule. Also our evaluations
show that taking into account the usage history of a phone

can result in an extra energy saving of up to 60% compared
to the optimal deterministic algorithm.

We conclude that the default screen management on the
Nokia smartphones that we studied are non-optimal in terms
of energy consumption, and can be improved in two steps:

1) Considering the energy profile of the phone screen
2) Taking into account the usage history

As a future work we intend to implement a simple client
that runs on the phone to process the usage history and suggest
optimal timeout values to the user.

In our evaluations we did not consider the user experience.
One might argue that our suggested timeout values are too
short for most mobile applications. While this argument is
true, we believe the users can make informed decisions about
the settings of their phone when they know the optimal
screen schedule. We also think the user experience can be
improved by setting the screen schedule for each application
separately. Each application knows how its users interact with
it. Through carefully designed interfaces, this information can
be communicated to the screen scheduler. The scheduler can
find the optimal trade-off between energy saving and user
satisfaction.

Most modern smartphones use a light sensor to measure
the ambient light and set the screen brightness accordingly.
During our energy profiling we fixed the screen brightness.
The screens on Nokia phones have five levels of brightness.
We can perform similar energy profiling for each brightness
level and find the optimal schedule for that brightness setting.
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