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Paper type: Research [+/ ] Critical survey [ 1] power them down or turn them off if possible [6]. Dynamically
turning off unused components is referred talgsamic power
Main area(s): Mobile Computing, Dynamic Power management (DPM)
Management, Context-Aware Computing We argue that dynamic power management for different
components of mobile phones can be improved by considering
Abstract—Large and bright screens on today’s mobile phones the usage history of the phone. Mobile phones differ from

account for significant energy demand on phones’ batterieslft]. ¢ heqged systems because human users directly interact wit
In this paper we propose an algorithm that, given the energy

profile of the screen, finds the optimal schedule to minimizeseen  them. In this work, we demonstrates. hOYV dynamic_power
energy dissipation when the phone is idle. We profile the scem management can be improved by considering usage history of
energy consumption of two popular smartphones, Nokia N95 ath  the phone user. We use the mobile phone screen and backlight
E71, through carefully designed micro-benchmarks. Our en@y g5 an example, and propose an energy management strategy

measurement results suggest that the default screen schéds_u ON  hat uses the history of user interactions as a priori toexehi
these phones are far from optimal - on average our algorithm

performs 50% better than default. We also find that on the E71 Detter energy §aving. .
not using the dim state of the screen and directly turning it df Current mobile phones turn off the screen backlight after a

is more energy-efficient. fixed interval that is configurable by the phone user. We show

_ We improve the performance of our screen scheduling algo- oy the optimal value of this interval can be derived from the
rithm by considering the history of each user’s interactionwith , t hist fint ti ith the oh
his/her phone. We study the interaction patterns of six volateers USErs past history of interactions wi € phone.

with their smartphones. The results suggest that the distbution In Section Il we show why scheduling the phone screen
of the length of idle times for each user does not change oveimie. is not a trivial problem. We model the problem formally
Therefore, the screen scheduler can learn this distributio during  jn Section Ill. Section IV details an algorithm that given

a learning phase and use it to improve screen management.
We show that the probabilistic algorithm can further reduce
the screen energy consumption by up to 60% compared to the

the energy profile of the screen and the user’s past usage
history finds the optimal schedule for the backlight. To aeval

deterministic algorithm. ate the performance of the proposed algorithms we conduct
Index Terms—Mobile Phones, Screen, Dynamic Power Man- experiments that are presented in Section V. We evaluate
agement the performance of this algorithm using our user traces and

compare it with the existing power management strategy in
Section VI. In Section VII we present the related work. Fipal

New functionalities are being added to smartphones géction VIl concludes the paper and outlines possibleréutu
an increasing rate. These include addition of new hardwaggrk.

capabilities, and introduction of new software featurdsede
feature-rich phones are usually referred tosagrtphones Il. THE SCREEN SCHEDULING PROBLEM
However, the increases in battery capacity have not matched
increases in functionality. In fact, battery capacitiesehaot Large screens have become a de facto requirement for
been growing more than 10 percent every year, whereas thday's smartphones. Large and bright screens account for
number of features and applications, and therefore powarsignificant portion of the energy demand on the phones’
consumption demand, is growing at a significantly highdratteries [14]. To conserve energy mobile phones turn eff th
rate [14]. As a result, increasingly more powerful processo screens when they are idle. On all current smartphonesia stat
multiple wireless interfaces and larger and brighter stsee timeout value is used to decide when to turn off the screen;
making phone batteries last shorter than they used to. most often the user can configure this timeout as part of the
The current technology situation makes power managemgiione settings.
a critical problem on smartphones. Most of the existing In this section we argue why finding the optimal value of
research on this topic treat smartphones and traditiorial de screen sleep timeout is not a trivial decision. First vie w
phones as embedded systems with several components. Teamv why a universal predefined value is not suitable. Second
has been considerable work on reducing the energy consumwg-demonstrate that expecting the user to find the right value
tion of each component and discovering when they are idleftr himself/herself is also not realistic.

I. INTRODUCTION
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Fig. 1. Picture of a Nokia N95 (left) and a Nokia E71 (right).

State | Description

ON LCD and backlight are on

DIM LCD is on, but the backlight is off
OFF | LCD and backlight are off

TABLE |
THREE STATES OFNOKIA SMARTPHONE SCREENS

Fig. 3. All possible state transitions in the screen. Characwith arrows
indicate the cause of the transition. E represents an eleamtg represents
being idle.
We performed micro-benchmarks on two popular smart-
phones: Nokia N95 and E71 phones (Figure 1). The screens on
these phones have three power states listed in Table I.digur lll. SYSTEM MODELING

2 plots the average power consumption of both smartphonesn this section we present a formal model of the screen
measured 10 times using the Nokia Energy Profiler tool [Sloower management problem which is partially based on
In Figure 2, one minute into the experiment the user touchi® theoretical modeling introduced by Augustine, Iramid a

the keyboard of the E71 and the phone turns on its screen &wamy [1]. We simplify that model and use it in a real setting.
backlight as as a response. 15 seconds after the phone,is idl&able Il summarizes the running and fixed costs associated
the backlight turns off (the phone enters the DIM state), andth each screen state. We assume that the screen power
30 seconds later the LCD is turned off too (the OFF stateonsumption is fixed in each state, and there is a fixed cost
The N95 experiment follows a similar scenario, with slighassociated with each state transition. We will verify these
shifts in time. assumptions in Section V.

The spikes in power consumption at times, when the screerFrom the modeling perspective it does not matter whether
state changes, indicate that each state transition incfixec a fixed cost is incurred when entering a state or when leaving
energy cost. We argue that, because of these fixed co#itsTo correctly associate fixed costs to state transitiows,
finding the optimal timeout to change states is non-triviaheed to identify all legitimate state transitions, becauisa
Consider a simple situation where a naive user sets thetimereal system arbitrary state transitions are not possilijeiré 3
value to one second. If on average the usethink timeis demonstrates all possible state transitions of the scidere
1.5 second,s the backlight will turn off right before the nexare two characters on each transition arrow. The first charac
user interaction happens. The user interaction will turrtten indicates the cause of the transition, that could be an idle
screen again and so on. If this scenario happens too oftgafiod (1) or an eventE) The second character is the fixed
the phone will end up consuming more energy on the screedst associated with the transition.
compared to the case where the backlight timeout is longer. Based on our observations we know that the phone can serve

This simple example shows why the shorter timeout valdige user only when the screen is ON. Therefore any event (e.g.
is not necessarily the better choice in terms of energy co#ser interaction) will turn the screen ON. On the other hand,
sumption. It also demonstrates how user interaction pattethe screen has two possible power saving states. When the
affect the optimal choice of screen timeout settings. Iis thecreen is idle, it can either directly turn OFF, or turn DIM
paper we will study this problem quantitatively, but first w@nd then OFF. These two possible scenarios as illustrated in
need a formal model of the problem. Figure 4. We will refer to the first scenario in this figure,ttha

takes advantage of DIM, as tleree-state scenarioNe will
interestingly, theNokia Green Phoneapplication urges users "set the call the alternate scenario tiwo-state scenario
backlight time out to as little as 1 second” to maximize posaving. Figure 5 plots the energy consumed by the screen in each of
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Fig. 2. Energy consumption of two smartphones in three rdiffe states of their screens: Nokia E71 (left), and Nokia It@sht)
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Fig. 4. State transitions in each screen management soeiidué label on each arrow represents the fixed cost assbeidtie the transition.

the three states as a function of the length of the idle peniod
a hypothetical setting. The three states of the phone semeen
represented with three lines. The slope of each line reptese
the energy consumption rate (power consumption) in thé sta
The intercept represents the fixed energy cost associatd wi ON
that state. In this model, initially proposed by Augustieg,
al. [1], the fixed costs relative to the next most active stae DIM
used. Thus, the line that represe®® has zero intercept and
its slope iISR;. B |

Energy

.............. | OFF

When the screen scheduling algorithm decides to make the
screen DIM, it should anticipate the fixed cost of enteririg th
state and also the cost of leaving it when a new event arrives. !
Therefore the intercept of the line representing DIM in Fegu al :
5is Cprm,on = C1 + Cs, and its slope isR,. |

|
|
|

Similarly the fixed cost associated with OFF is the sum of
fixed costs of entering OFF from the previous state and the
fixed cost of entering ON from OFF. Depending on whether ty ¢t to Idle time
the system is operating in the three-state or the two-state
scenario, the previous state to OFF is DIM or ON. ThereforEig. 5. Energy consumed by the screen in each possible statefunction
the intercept of the line representing OFFG%rr pry = of the length of idle time.

Cs+ C5 or Corron = C2 + Cs, respectively. The slope of
this line is Rs.
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IV. ALGORITHM DESIGN

In this section we present an on-line algorithm that gives
the optimal schedule for screen management based on th Ro—Rs
power consumption profile of the screen. We then improve thisCost1 = t'Ry + (C2 + Cs)
algorithm to take into account the distribution of the input ~ Costa = t1R1 + (f2 — t1) Ra + (C1 4 C3) + (Ca + Cs)
achieve better performance in terms of energy consumption. if Costa < Cost, then

We define a strategy or schedule for screen management as return (¢1, t2)

(T1,T,), whereT; and T are the timeouts for turning the else

screen DIM and OFF, when the phone is idleT1f> T5, the return (t',t)

schedule is essentially not using the DIM state of the screerend if

which means the two-state scenario is being used.

The problem of finding the optimal strategy is an on-line
problem, because the scheduler does not have the input in

advance. A common metric to evaluate the performance of @ iously, 7' can be selected to minimize the expected cost.
on-line algorithm is itscompetitive ratio Competitive ratio is Augustine et al. [1] proved that in the multi-state scenario

the ratio of the worst case cost incurred by the algorithnhéo tyhe gptimal transition times are the optimal transitionetinof

cost of the optimal off-line algorithm that knows the future ,, simplified two-state systems. Therefore the optimatim

The algorithms that follow, effectively make two decision§, yansition from ON to DIM in the three-state scenaridis
First they choose the better scenario, and second, theyhiind fhat minimizes the following expected cost
best timeout value(s) of that scenario.

Fig. 6. Deterministic algorithm to find the optimal screemesule

Ty
A. Deterministic Algorithm E)(Costy(T1)) :/ (Rit)m(t)dt
If the fixed costs are additveClorron = Corrpim + o 0
Cpim.on), the optimal deterministic on-line strategy, called +/ (RlTl + Re(t—Th) + CON7DIM)7r(t)dt (2)
Lower Envelope Algorithm (LEA), follows the lower envelope Ty

curve of Figure 5 (plotted in solid lines) at any time. Thénd the optimall} to transition form DIM to OFF is one that
schedule resulted from their algorithm (i, t2). wheret; is  minimizes the following:

the first time that the cost of ON exceeds DIM, aads when T

keeping the screen DIM costs more than transitioning to OFF.EW(t) (Costly(Ty)) = / (Rot)m(t)dt

Irani et al. [8] first proposed this algorithm and proved tiat 0

is 2-competitive. / >
, . + RoTo + R3(t —Tz) + Cpr, t)dt
Augustine et al. [1] consider the general case where the T ( 202 3 2) DIM"OFF)ﬁ( )
fixed transition costs are not additive. They give an alganit 3)

that efficiently enumerates all possible strategies and fihd
one with the lowest competitive ratio. They prove that th%

worst case competitive ratio of this algorithm3ig- 2v/2. The minimize E(Cost]) and E(Cost}) are determined, we can

number of states in the screen scheduling problem is Iimm'Iedcompute the expected cost of the three state strategy as
three, therefor we do not need to run their dynamic progrgmi?bllowing'

algorithm to decide which of the two possible strategies has
a better competitive ratio. The algorithm in Figure 6 simply .

. 1
compares the worst case cost of the two possible SChedUIGE“,,(t)(Costg(Tl,Tg)) :/ (Rit)m(t)dt
given the cost values of Table Il and returns the schedule tha 0

The expected cost of the three-state strategy is neither
(Costy) nor E(Costy). Once the optimall; andT: that

has the lowest cost. +/T2 (R\Th + Ralt — 1) + C Ve()dt
—_ 1)
B. Probabilistic Algorithm oo ' omp
If.the d|str[butlon of the length of idle times is known, the +/ (RiTy + Ro(Tz — T1) + Con,pru
on-line algorithm can be augmented to optimize the expected T
cost of the screen schedule instead of the worst case cost. + CDIM,OFF)TF(t)dt 4)

Assume that the length of the next user idle time is a random _ o ) _ o
variable that follows a known distribution(t). If we use Tas ~ The algorithm in Figure 7 decides which scenario gives the
the timeout value to turn the screen OFF, the expected enefifimal screen schedule and returns the optimal schedule.

cost of the two-state scenario is: V. MEASUREMENTS

T
Er)(Costy(T)) = / (Ryt)m(t)dt To evaluate the performance of the proposed algorithms we
0 performed measurements on real phones and with real users.

. /oo (RiT + Rs(t — T) + Con.orr)m(t)dt (1) N this section we present the methodology and results of our
T ’ measurements.



t' = argmin E ) (Costy(T))

Fixed cost | E71 | N95 |

t; = argmin E 4 (Cost} (T1)) G 0.248 | 0.049
b= in B (Cost! (T Ca 0.284 | 0.243
2 = argmin Er ) (Cost{ (Tz)) Cs 0.236 | 0.174
Cost1 = Er)(Costy(t')) Cy 0.119 | 0.096
COStQ = Err(t) (COStQ (tl, tg)) Cs 0.262 | 0.360
; Cpraron | 0484 0223
if Costy < Costy then :
Corr.pry | 0.381 | 0.456
return (t1,ts) Corron | 0.546 | 0.603
else o TABLE IV
return (t 9 t ) FIXED ENERGY INCURRED DURING SCREEN STATE TRANSITIONS OF TWO
end if NOKIA SMARTPHONES
Fig. 7. Probabilistic algorithm to find the optimal screemestule
State E71 N95 _ ) _ o
R; (ON) | 0.132 (W) | 0.081 (W) their daily phones. We installed thidokia Simple Context
Rz (DIM) | 0.011 (W) | 0.011 (W) (NSC) collectoron these phones, and configured it to sample
R3 (OFF) | 0.000 (W) | 0.000 (W) : :
system information every 10 seconds. The system module of
TABLE Il NSC, among other system level information, logs the screen

POWER CONSUMPTION OF SCREEN STATES OF TWNOKIA SMARTPHONES . . . . . .
inactive timer. We use the value of this timer to infer the

length of screen inactivity times. N95 users participatethis
experiment for four weeks, but E71 users continued coligcti
- data beyond the end of one month.
A. Energy Profiling Figure 10 plots the cumulative distribution functions of
We performed micro-benchmarks on two popular smare length of inactivity times of two N95 users and the two
phones, Nokia N95 and E71. On each smartphone we installedl users. Based on the semi-log plots of the complementary
the Nokia Energy Profiler [5] and ran the benchmarks whileumulative distribution functions in Figure 11 we conjgetu
the profiler was running. We repeated each benchmark ttat inactivity times of smartphone users follow truncated
times. In this section we report the average energy consunepponential distributions. However, the algorithm in Figu
tion across the 10 measurements. The average of measurdd agnostic to the type of the distribution of idle times.
energy values are plotted in Figures 8 and 9 along with erBut it requires the distribution to be fixed over time (i.det
bars. idle times be astationary process). A stationary process is
You can see three plots in each of these two figures. Eaalstochastic process whose joint probability distributitores
plot is the result of a different micro-benchmark designed hot change over time or space.

measure specific fixed costs: We hypothesize that the length of user inactivity times on
1) The phone is left idle until the screen turns DIM andheir phones is a stationary process. We used the KPSS test fo
then OFE. stationarity [12] to test our hypothesis. The KPSS testragsu

2) The phone s configured to avoid the DIM sate. It s lefhe following model:
to turn the screen OFF, then we press a button to turn
the screen ON and wait until it turns off again.

3) The phone s configured to avoid OFF, and only tutwhere r; is a random walk (i.e.;; = r;_1 + wu, and
DIM. It is left to turn DIM, then we press a button tou, ~ i.i.d N(0,02)). 3t is a deterministic trend, and is a
turn the screen ON and wait until it turned DIM againstationary error. In this model, to testif is alevel stationary

We have labeled the power consumption spikes that indic&ocess, that is the series is stationary around a fixed, leneel

fixed energy costs associated with state transitions inregunull hypothesis is3 = 0.

8 and 9 with the corresponding names from Table II. We were The KPSS test statistic is:

unable to design a benchmark to meastge but fortunately ZN— S,

this cost is not used in any of the algorithms in Section IV. KPSS = ]657;2 (5)
Table Il summarizes the average power consumption of the

screen in each state. We subtract the base power consumpfdiere S; = >, (z; — ) and 62 is an estimator of the

(device power consumption when the screen is OFF) from tigg-run variance ofz; — 7).

total consumption values to get the power that is consumedAccording to Kwiatkowski et al. [12] under the null hypoth-

only by the screen. Table IV summarizes the average fixggis of level stationarity:

transition costs measured for each smartphone.

ZCt:’f‘t-i-ﬁt—f—Gt

1
KPSS — / Vi(r)%dr (6)
B. User Study 0

We gave four N95 and two E71 Nokia smartphones twhereV;(r) is a Brownian bridge (i.e., assuming thafr) is
six volunteers. The subjects agreed to use these handseta &ownian motion process on € [0,1], Vi(r) = B(r) —
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Upper tail percentiles [ Setting | Phone | T; | T2 |
Distribution 0.1 0.05 | 0.025| 0.01 - E71 25 15
KPSS 0347 | 0.463 | 0.574 | 0.739 Factory Setting No5 | 10 | 60

Deterministic Optimal Erl 4 4

TABLE V N95 3 20
UPPER TAIL CRITICAL VALUES FOR THEKPSSSTATISTIC ASYMPTOTIC
DISTRIBUTION TABLE VII
DEFAULT AND DETERMINISTIC OPTIMAL SCREEN SCHEDULES FOE71
AND N95
user KPSS level | p-value
E71-1 0.428 0.06
E71-2 0.348 0.09 User T | E[Costi1] | T1 | T1 | E[Costz]
N95-1 0.432 0.06 E71-1 ] 1 0.140 1 10 0.173
N95-2 0.725 0.01 E71-2 | 1 0.138 1 9 0.181
N95-3 0.239 > 0.1 N95-1 | 1 0.138 1 8 0.134
N95-4 0.652 0.01 N95-2 | 5 0.126 1 13 0.110
TABLE VI N95-3 | 2 0.128 1 21 0.108
KPSSTEST FOR STATIONARITY RESULTS N95-4 | 3 0.132 1 24 0.113
TABLE VIl

COMPARING THE EXPECTED COST OF THE TWESTATE AND THREE-STATE
SCHEDULES FOR EACH USER

rB(1)). Table V lists the upper tail critical values of the
asymptotic distribution of the KPSS statistic.

Intuitively, a smaller KPSS value indicates higher stationy propabilistic Schedules
arity. As an example the KPSS value of a sequence of 10,000 . _
iid samples fromNormal(0,1) is 0.054. The KPSS test _We divide the tr_aces from (_each user into two sets of equal
implementation in R also reports thevalue for the given SIZ€: We use the first set Er.a!nlng dataand the second. set as
KPSS value. It approximates the p-values by interpolatidfSting datawe use the training data to compute the histogram
from a simulated table of critical values. p-values largeart ©f the length of idle times a/nd use this histogram in Algarith
0.1 are typically considered to be non-significant and pesl 7 to numerically compute’, 1, ¢, and the C(_)rresp_ondmg
smaller than 0.01 are regarded highly significant. values ofCost; and Costs. These values are listed in Table

Table VI summarizes the results of the KPSS test on all oYt - F_or_E?l users we use the energy costs of the E71 phone,
users’ data. The p-value is greater thai only for one user and similarly for N95 users. We do this, because we observed

2 We can conclude that for five out of six users the length dft the form factor thahphonﬁ affects its u?tage.hFor zxa,mple
idle times are stationary distributions with high confidenc /1 Users interact with their phones more often that N9ssuser

Our explanation for the lack of confidence in stationarity thThe _result of A_Igoc;it_hm 7b|for each user baser(]j on hi_]s/her
the distribution of idle times of user N95-3 is that this use}'on€ IS summarized in Table IX. You can see that similar to

did not effectively use the phone as his/her primary phont a e deterministic algorithm, the probabilistic algoritliecides
used it along with his/her personal phone. not to use thg DIM state of t_he E_71 screen. Also as a result

of the short tail of the probability distribution of the lethgof

VI. EVALUATION idle times, the probabilistic algorithm chooses shorteetut

) i values compared to the deterministic algorithm.
In this section we evaluate the performance of the proposed

algorithms in IV using our measurement results. For all the. Performance Evaluation
schedules that will be presented we round the timeout vatues . implemented a trace-based simulator, na®egenSim

the secqnd which i§ the maximum granularity of our phoneg, compare the performance of the three screen schedules:
screen timeout setting. default, deterministic, and probabilistic. Given a screesm-
agement schedule, the energy profile of a mobile phone screen

and the usage history of a user, ScreenSim computes the total
Figure 12 plots the lower energy envelope for both phones

using the results of our energy profiling. An interestingarbs

A. Deterministic Schedules

vation is that on E71 the lower envelop does not include the e 1T T
DIM line. This is intuitively why the algorithm in Figure 6 E712 | 1 1
does not use the DIM state and retufds4). Four seconds N95-1 | 1 8
is the time when the lines representing OFF (with intercept mgg:g 1 %i
Corr,on) and ON intersect. For N95 Algorithm 6 returns N95-4 | 1 | 24
(3,20) as the optimal schedule. _

OPTIMAL PROBABILISTIC SCHEDULES FOR EACH USER
2The KPSS.test() implementation in R does not report thelpeverhen it
is greater than 0.1
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Fig. 12. Screen energy lower envelop for the determinidggoradhm
user Default Deterministic Opt. | Probabilistic Opt
E71-1 | 931.611£5.572 | 317.934+3.255 223.672+2.730 1 . . — ; ;
E71-2 | 305.51+3.567 | 97.731+1.976 61.528+1.601 Deterministic Schedule mm—
NO5-1 | 94.578+2.292 | 55.052+1.748 45.069+1.582 Probabilistic Schedule =——
N95-2 | 64.496+3.035 43.316+2.326 36.640+2.140 08 L
N95-3 | 72.453+2.127 45.661+1.689 42.126+1.622 :
N95-4 | 30.799+3.204 18.072+2.454 17.29842.401
TABLE X 06 - i
AVERAGE DAILY ENERGY DISSIPATION OF THE SCREEN BY THREE SCREE o
SCHEDULES FOR EACH USER Eé
0.4 r 1
energy consumed by the screen. 02 |
Table X lists the average and standard deviation of the daily
energy consumed by each user when using each of the three 0

screen schedules. The average is computed over multipke day E71-1 E71-2 N95-1 N95-2 N95-3 N95-4

of usage. Figure 13 plots the ratio of energy consumed by

the deterministic and probabilistic schedules to the defafig. 13. Ratio of energy consumed by the deterministic arabadilistic
schedule energy consumption for each user. schedules to the default schedule energy consumption

The deterministic schedule results in 50% average energy
reduction compared to the default factory setting. The gner
reduction resulting from the probabilistic schedules ttadke
into account the usage pattern of each user is about 40% on
average.

Figure 14 plots the histogram of the ratio of energy con-
sumed by the probabilistic schedule of each user to the
deterministic schedule. The average ratio is about 80%. The
improvement resulted from the probabilistic schedule ia-mi
imal for users N95-3 and N95-4. These two users have the
lowest number of total interactions, therefore the prolistto
algorithm does not have much input to work with. In other
words, because of the infrequent interactions, the prdibtbi
schedule is close to the deterministic.

VIl. RELATED WORK

Prior to the introduction of on-line DPM algorithms, DPM
solutions h,ave been followmg either a predlgtl\{e approralch Fig. 14. Ratio of energy consumed by the probabilistic soledto the
a stochastic control approach [2]. The predictive appresiCtenergy consumed by the deterministic schedules
attempt to predict the length of the next idle period usingtpa

Ratio

E71-1 E71-2 N95-1 N95-2 N95-3 N95-4



history of the system. Based on this prediction, the powean result in an extra energy saving of up to 60% compared
management system chooses the optimal power state svgtchimthe optimal deterministic algorithm.
threshold. The prediction algorithm is either adaptive onn ~ We conclude that the default screen management on the
adaptive. Non-adaptive predictive algorithms set theniéés Nokia smartphones that we studied are non-optimal in terms
threshold once and forever, whereas adaptive algorith@s af energy consumption, and can be improved in two steps:
affected by the observed input patterns [7] [3] [4] [18] [21&]l 1
these schemes make a single prediction and pay the overhe
if the actual idle time is different from the predicted value ) i _ _
Stochastic approaches [15] [17] [16] make assumptiorhsAs a futureh Worr1k we intend to |rr]nplementh§1 S|mpledcl|ent
about the probability distribution of the job request patse that runs on the phone to process the usage history and sugges
and formulate the DPM problem as an stochastic optimizati(?lrl)t'maI timeout yalues to -the USEr. i ,
problem. They are highly sensitive to the underlying assumgrlln our evaluations we did not consider the user experience.

tions, and proving any theoretical bounds on their perforcea 1€ Might argue that our suggested timeout values are t0o
is difficult. short for most mobile applications. While this argument is

Recently researchers have studied DPM as an on-line prgl!sj-e' we believe the users can make informed decisions about
lem [1] [8] [9]. Similar to any on-line algorithm, the powerthe settlngr;]sdofl th\?\'/r pTon?h.WL]et?] they know t-he opumalb
management system should decide about resource allocafiplfe" scheadule. We aiso thin € user experience can be
before knowing all the input (i.e. the length of the idle pel. improved by setting the screen schedulg for each applm:atlo
On-line algorithms are analyzed based on thmimpetitive geparately. Each appllca_tlon kr_“’WS how its users mter_abtw
ratio; the ratio of the on-line algorithm cost, to the cost of the’ Through garefully designed interfaces, this inforrattan
optimal off-line algorithm e communicated to the screen scheduler. The scheduler can
. find the optimal trade-off between energy saving and user

The same general setting as the Dynamic Power Manage-. .
atisfaction.

ment problem, although simpler, exists in many other areasM ¢ d toh liaht i
of Computer Science. In a shared memory multiprocessi ost modern smariphones Use a fight Sensor to measure
the ambient light and set the screen brightness accordingly

system, a process that is waiting for a locked resource must . - : :
decide whether to spin or lock [10]. A gateway betwee uring our energy profiling we fixed the screen brightness.
e screens on Nokia phones have five levels of brightness.

a connection-oriented network and a connectionless nktw ‘ imil filing f h brigh
should decide when to drop a connection [11]. These are tv\{o—e can pertorm simuiar energy profiing for €ach brig ”‘?SS
state examples of the same problem for which there is a E\_/el and find the optimal schedule for that brightnessregtti
competitive deterministic on-line algorithm. When the uhp
follows a known probability distribution the on-line algthm

can perform better and achievg(e —1) expected competitive | would like to acknowledge comments from Prof. Ramesh
ratio. Govindan and my advisor, Prof. Deborah Estrin, on this work.

Considering the energy profile of the phone screen
Taking into account the usage history
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