Hierarchical Graph: A New Cost Effective
Architecture for Network on Chip

Alireza Vahdatpour!, Ahmadreza Tavakoli?, and Mohammad Hossein Falaki'

! Computer Engineering Department,
Sharif University of Technology
{vahdatpour, falaki}@ce.sharif.edu
2 Electrical Engineering Department,
Sharif University of Technology
artavakoli@ee.sharif.edu

Abstract. We purposed a new Network on Chip (NoC) architecture
called Hierarchical Graph. The most interesting feature of this novel ar-
chitecture is its simple implementation process. Furthermore, the flexible
structure of this topology makes it suitable for use in application specified
chips. To benchmark the suggested architecture with existing ones, basic
models of physical implementation have been extracted and simulated
using NS-2. The results compared with the common used architecture
Mesh show that HG has better performance, especially in local traffics
and high loads.

1 Introduction

As predicted in [I], we will enter the Ultra Large Scale Integration (ULSI) design
world with 45nm technology in 2010. Integration of multibillion transistors will
be possible and device delays will get smaller. The dominant issue in design
would be the interconnection between transistors.

The closer we get to large chip integration, the more we need smart design
plans. Currently one of the most accepted plans is System on a Chip (SoC).
In SoC methodology a number of IP-cores (FPGAs, mixed signal blocks, pro-
cessors, memory blocks etc.) are placed together on a single chip, with proper
systematic interconnections. Today the most common method of interconnection
is BUS. While the number and complexity of cores are increasing in Ultra Deep
Submicron, interconnections become more challenging.

Computer networks have been successful in handling the problems of man-
aging large number of resources. This has led to a new paradigm in the design
of SoC systems, called Network on Chip |2] which is compatible with Globally
Asynchronous Locally Synchronous (GALS) design method. NoC design uses
protocols similar to OSI reference model of networking [3], as the interconnec-
tion facility between IP cores. Currently, the most common network architectures
for NoC systems are Mesh and Fat-Tree [4].

In this paper we have introduced a new architecture for NoC systems named
Hierarchical Graph (HG). Some related work is addressed in the next section and

L.T. Yang et al. (Eds.): EUC 2005, LNCS 3824, pp. 311-[320] 2005.
© IFIP International Federation for Information Processing 2005

312 A. Vahdatpour, A. Tavakoli, and M.H. Falaki

then various aspects of the proposed architecture are introduced in section 3. In
section 4 some physical properties of the implementation of HG are discussed and
then the performance of the new architecture is compared with Mesh through
the simulation. Finally the results of simulations are presented in section 5.

2 Related Work

There are many research groups working on SoC systems from architectural point
of view. In [4] Shashi Kumar et al. introduced a new methodology for designing
mesh architecture for NoC. Lacking specific tools for evaluating networks on chip,
the performance of Mesh and Fat-Tree were compared using Network Simulator
(NS-2) in [5] and [6]. Some useful strategies were introduced by Daniel Wiklund
et al. in [7] for benchmarking on chip networks.

3 Architecture

Hierarchical Graph (HG) network topology is designed specially for NoC systems
to be compatible with Ultra Deep Submicron fabrication technologies.

Fat-Tree as a network topology has good performance, but its irregular and
intensive interconnection lines make it impractical to be implemented on a chip.
Although the throughput of HG is not as good as Fat-Tree, it can be implemented
with a single metal layer because of its simple interconnection rules. Decreased
ratio of switch per resource and simpler switch implementations decreases the
implementation cost.

As the name suggests, HG consists of a hierarchical structure of plain graphs
(see Fig. In each level, there is a graph of interconnected switches, some of
which named Border Switches are responsible for connecting the graph of this

o Non-border Switch

® Border Switch
(a) General Hierarchical struc- (b) Structure of proposed Square
ture of HG HG(SHG.)

Fig. 1.

Hierarchical Graph: A New Cost Effective Architecture 313

level to the upper level graph. To facilitate physical implementation of intercon-
nections, the graph in each level can have a regular shape e.g. square, which leads
to Square Hierarchical Graph (SHG). The main focus in this paper is on SHG.
The number and position of the border switches are flexible parameters of this
architecture. A good choice of border switches in a SHG network would avoid
diagonal links as shown in Fig In the highest hierarchy, there is always a
single powerful switch called primary switch. In HG the cores can be placed in
different levels of the hierarchy according to their specific communication needs.
For example the cores with higher traffic requirements such as central processing
units or shared memories can be placed in higher levels to reduce latency and
increase the overall performance of the chip.

To analyze performance parameters of HG we used a specific version of SHG.
For N? general cores, such a SHG network uses (N — 1)? switches with strict
connection lines to make a symmetric graph with maximum performance and
minimum latency. When N is odd, the central core is substituted with a high
performance switch named primary to make the graph more symmetric. The
network in Fig which is a version of the SHG just mentioned consists of 17
switches, one powerful switch in the highest level, 4 ones in the second level and
12 switches in the third level. Four of the switches in the lowest level are not
border switches and the rest are all border switches.

QO OO D feppns
fiienioy 0Ji61l0](0]
QIOBIRI® St
T 0]16110)(0]
GO ® oo e
e g Ie
gy Higmg Nt I Wl
0. 7® j@ O, OO} 01010)
R : Resource R : R
S : Switch
(a) Overview of SHG architecture (b) Overview of Mesh architecture
Fig. 2.

Simulations in section 4 demonstrate that, this type of SHG outperforms
Mesh in many benchmarks while its number of switches is less than the equiva-
lent Mesh (see Fig. It is predicted that the complexity of switches in NoC
systems would increase dramatically as the need for implementation of heavy
weighted routing algorithms, large queues and queue management disciplines

314 A. Vahdatpour, A. Tavakoli, and M.H. Falaki

increases. Thus the fewer number of switches would reduce the chip area and
overall cost. According to [8], switches with less than five inputs and output vir-
tual channels have simple implementation. So HG switches are not more complex
in comparison to common switches used in Mesh.

4 Simulation

Simulations were used to compare the new architecture with existing ones from
the performance point of view. Our intention was to prove the suggested archi-
tecture has no or little performance penalty while reduces costs. Among the two
other architectures , Mesh and Fat-Tree, only Mesh is compared to HG. This is
because of the implementation issues of Fat-Tree, discussed in 41l In the section
the results are compared and different aspects of performance issues of the
new architecture are discussed.

Simulations were done using two different traffic models: random traffic and
local intensive traffic. In each simulation scenario we used a Mesh of 25 cores
which requires 25 switches and a SHG with 24 cores in which 17 switches
are involved. The two measured performance indicators were ”drop probabil-
ity” and ”overall packet delay”. Drop probability is the ratio of the number
of dropped packets to the total number of generated packets. For the overall
packet delay, end to end delay of all delivered packets was measured and aver-
aged.

The underlying transmission protocol used was UDP. UDP offers no con-
gestion control and reliability. While these two issues are not covered well in
NoC researches, TCP is not a good choice because of its high overhead, non
predictable delay and other implementation issues. The use of an application
specific congestion control can increase the overall performance. There should
also be methods to detect and recover delivery failures either in application layer
or network layer. These issues are still open to research. Since we are just inter-
ested in the architectural performance evaluation, we can safely use UDP for all
architectures.

The two traffic models discussed before differ in the choice of sender-receiver
pairs. In the random traffic model, each node sends data to another random node.
Since each node has no more than one traffic sink and source, this is equivalent to
a uniform distribution of sink and source pairs among the cores. While this traffic
model can indicate some performance features of any architecture, in practice
the locality of traffic is important. For the local traffic model we chose source
and sink pairs in a way that 75% of traffic is local. The rest 25% was distributed
randomly among the remaining nodes.

The traffic source behavior is also of special importance, while the particu-
lar traffic behavior can greatly depend on the specific application, exponential
traffic seems most suitable for the simulation purpose. All simulations were also
repeated with randomized Constant Bit Rate (CBR) to cover a wider range of
traffic behaviors in real applications.

Hierarchical Graph: A New Cost Effective Architecture 315

4.1 Modeling Simulation Parameters

For simulation of any network architecture for NoC, we need system level mod-
eling of different chip implementation parameters such as switch delays, link
maximum bandwidth and delay of links.

Our modeling parameters are based on the ITRS 2004 data for 45 nm tech-
nology predicted to come to market in 2010 [I]. For modeling purposes we will
use the top level global interconnection parameters. As predicted in [I], these
interconnections will have RC delay about 143ps/mm to 189ps/mm (the exact
amount of delay depends on scattering effects). Also the intrinsic delay of each
NMOS is considered to be about 0.39ps to 0.98ps, (the exact amount of delay
depends on performance and power efficiency of the device). With these delay
values for NMOS the delay of a NAND gate would be about 9.88ps to 24.8ps.
The number of maximum parallel lines that can be used to increase bandwidth
of a link is also important. This depends on global links wiring pitch size which
is predicted to be about 205nm.

In Fig there are 24 cores, one primary switch and 16 ordinary switches.
If we assume the cores and primary switch to be about 2.5 x 2.5mm? and the
ordinary switches about 0.5 x 0.5mm?, in a chip area of 1.5 x 1.5e¢m?2, the length of
the links between ordinary switches would be 2.5mm and the length of the links
between cores or primary switch and ordinary switches is 0.1mm. The overall
length of the links is smaller than 10cm, so using the given pitch size there could
be more than 5000 parallel lines in each link. For simplification of modeling only
1024 parallel lines have been used. Using ~ 200ps/mm delay for links, delay of
a link between two switches will be about 500ps and the links from a switch to
a core would have about 20ps delay. The switch implementation is based on [§].
The delay of this switch could be modeled with 5 series of NAND gates estimated
about 50ps. The delay of each Resource Network Interface (RNI) is about half
of the delay of an ordinary switch and thus about 25ps.

For a signal transmitted from a RNI and received by a switch, the overall
delay consists of RNI delay, link delay and half of a switch delay which is totally
about 70ps. This means 550ps switch to switch delay. For calculating switch to
link bandwidth, 550ns delay is considered leading to 2G H z bandwidth for each
line. So 1024 parallel lines bundled in a link would have 2048G H z. Using this
method the bandwidth of the link between a switch and a core is 51.2GH z.

In Mesh topology (Fig core to switch links and switch to switch links
are the same as in SHG. Also RNI and Switches have approximately the same
structure as in SHG. So the same model as SHG is used for Mesh.

In Fat-Tree the connections cannot be implemented on a single metal layer
and its long link distances in real chips make the bandwidth of links very poor
in comparison to the two other topologies, Mesh and HG.

4.2 Simulation Experiment

All simulations were done using the publicly available Network Simulator (NS-2)
[9]. Both a traffic sink and a traffic generator were attached to each node. In

316 A. Vahdatpour, A. Tavakoli, and M.H. Falaki

other words each node could both send and receive data which is near to what
is expected in real applications. Since the selected Mesh network had one core
more then SHG, the central core of Mesh was not involved in simulations.

To reduce high variations in random traffic model we had to repeat each
simulation and use the average result.

Since NS-2 is designed for computer networks, the bandwidth and delays
proposed for a NoC system are not suitable for simulation. We scaled down all
the estimated quantities by dividing all bandwidth values by a factor of 10240
and multiply delay values by a factor of 10240, so all simulation results are in
terms of scaled quantities.

5 Results

As mentioned before the results of simulations are average packet delay and
drop ratio for Mesh and SHG, using two traffic models and two traffic source
behaviors. The results are presented here according to the traffic model. In the
following graphs delay and drop probability are shown versus traffic load gener-
ated by a single traffic source.

5.1 Random Traffic Model

Although the random traffic model is not what is expected to happen in real
applications it can provide a good measure for comparing the two architectures.

The use of random CBR traffic generators in the random traffic model for
SHG and Mesh resulted in Figl3l and Figldl The graph in Figl3 shows average
packet delivery delay versus traffic load of any traffic source and the graph in
Figldl depicts packet drop ratio vs. traffic load. While in SHG, packet drop begins
near 85Mb/s for a source, in Mesh packet drop begins from 90Mb/s. No NoC

J\/
o

(o]
Traffic(Mb/s)

25

10 2 30 40 50

Fig. 3. Packet delay vs. traffic load of a random CBR source in a random traffic network
(random traffic model)

Hierarchical Graph: A New Cost Effective Architecture 317

0.06 T T T T
—+— Mesh Drop Ratio
—— SHG Drop Ratio
o e T S t GO SELTE -
oo T T e R T
2
&
B I T e R L i Mttty ST - -
2
) 1/
o Rnaet SUTTEE SELLE - o \/J %
P S AUSUUE S S SUSN S - /\/ J\j]
4 Nodedrsr
10 20 30 40 50 60 70 8O0 100 120 150 200

Traffic(Mb/s)

Fig. 4. Drop probability vs. traffic load of a random CBR source in a random traffic
network (random traffic model)

50
—+— Mesh Delay
—— SHG Delay

Pl
i A AN

205 15 25 35 45 55 65 75
Traffic(Mb/s)

Fig. 5. Packet delay vs. traffic load of an exponential source in a random traffic network
(random traffic model)

system can be used in traffic loads near these values but for comparison purposes
we continued the simulations beyond these points.

FigBl shows that the overall packet delay in SHG is less than Mesh by a
constant factor. On the other hand packet drop ratio is less in Mesh.

The exponential traffic source simulations lead to similar results in Figlhl and
Figlol

The exponential traffic source is expected to be more realistic as a traffic
source. As the graphs show, the results for this type of traffic source have very
little difference from the outcome of random CBR traffic source simulations.

The results of random traffic model indicate that SHG performs better when
considering overall packet delay. On the other hand SHG is defeated by Mesh
when considering drop. The point where considerable packet drop begins is the
same in both topologies and after that the drop rate is higher for SHG. After the

318 A. Vahdatpour, A. Tavakoli, and M.H. Falaki

0.025 T T T
—+— Mesh Drop Ratio
—— SHG Drop Ratio
0.02
Lo e o e S S B S T
2
=
o
g
S Y X 1) SRS UUOUHORRRS USSP IO Ut SOSUMURE SOSUS RPN R S
[K
[e e - R LGS A O el tEL S > S LEINNE
c”IO 20 30 40 50 60 7O 80 100 120 150 200

Traffic(Mb/s)

Fig. 6. Drop probability vs. traffic load of an exponential source in a random traffic
network (random traffic model)

packet drop starts the network is considered unusable. Thus the most important
section of all simulations is where the network is working without any drop.

5.2 Local Traffic Model

The local traffic model resembles real applications to a greater extent than ran-
dom traffic. Thus the results of this section are of more interest and importance.
Besides the more interesting nature of local traffic model, the absence of ran-
dom variations makes the graphs more readable especially for the exponential

simulation.
Fig[llshows the results of simulating random CBR sources in SHG and Mesh

in a local traffic model.

500 | | |

lThDelay'
480 e -1 - SHG Delay |+
400 -

350 oo

300 -

100 —---------- 7 /\j e
ol i S N o AT SR U DN A I
R N R T NG AN
%o 20 30 40 50 60 70 80 90 100

Traffic(Mb/s)

Fig. 7. Packet delay vs. traffic load of a random CBR source in a local traffic network
(local traffic model)

Hierarchical Graph: A New Cost Effective Architecture 319

0.05 T T T
+ Mesh Drop Ratio
SHG Drop Ratio

0.03

Drop Ratio
=]
[s]
N
4]
T

o R = - i oo

QIO 100 200 300 400 500
Traffic(Mb/s)

Fig. 8. Drop ratio vs. traffic load of exponential sources in a local traffic network (local
traffic model)

Unlike the random traffic model, SHG shows better results for drop ratio in
local traffic simulations. The reason is that in SHG there exist neighbor nodes
with only one switch between but in Mesh the minimum number of switches
between two resources is two. In other words SHG shows better locality than
Mesh. Exactly the same reason stands for the bigger gap in delay of SHG and
Mesh in higher loads.

In Figl§ the drop ratio of SHG is much less than Mesh and the difference
becomes more as the traffic load increases.

Figll shows the delay of delivered packets for a local traffic model using
exponential traffic sources.

These graphs shows that in lower traffic loads SHG performs better by a
constant factor, and as the load increases the difference becomes more.

100 T T T T T
—+— Mesh Delay

90 [---imeeee - o
|ASHG Delay

8O- - il

rol : i

L . : . . |
;[,, .

A0 oo - ¥

30 oo - N /—

20 - coodeonend

Delay(us)

10 e

40 50 60 70 80 100 120 150 200
Traffic(Mb/s)

Fig. 9. Packet delay vs. traffic load of exponential sources in a local traffic network
(random traffic model.)

320 A. Vahdatpour, A. Tavakoli, and M.H. Falaki

6 Conclusion

This paper introduced HG as a flexible topology, specially designed for on chip
networks. The flexibility of HG makes it suitable for various applications of
SoC. HG provides a network infrastructure that can be easily altered to suite
different applications. As an example SHG was introduced and benchmarked
with a common used architecture (Mesh). The simulations proved that while
SHG is easier to implement it outperforms Mesh in many aspects.

7 Future Work

The performance of HG depends on the appropriate choice of different topolog-
ical parameters and many other factors such as switch buffer size, bandwidth
and etc. The best approach is to find suitable values for these parameters for
specific applications. These problems can be addressed in future work.

Furthermore, there are uncovered issues such as congestion and reliability
control protocols, routing protocols and many other issues that are common
among a very wide range of applications.

References

1. ITRS. International technology roadmap for semiconductors - 2004 edition,
http://public.itrs.net/

2. L. Benini and G. De Micheli, Networks on Chip: A New SoC paradigm, IEEE
Computer, January 2002(Vol. 35, No. 1), pp. 70-78.

3. JD Day, H Zimmermann, ” The OSI reference model”, Proceedings IEEE, 1334-1340,
December 1983.

4. Shashi Kumar, et al., ” A Network on Chip Architecture and Design Methodology”,
IEEE Computer Society Annual Symposium on VLSI, Pittsburgh, Pennsylvania,
USA, April 2002.

5. Yi-Ran Sun, Shashi Kumar, Axel Jantsch, ”Simulation and Evaluation for a Net-
work on Chip Architecture Using Ns-2”, Proceedings of 20th NORCHIP conference,
Copenhagen, November 2002.

6. Vu-Duc Ngo and Hae-Wook Choi ”On Chip Network: Topology design and evalua-
tion using NS2”.

7. Daniel Wiklund, Sumant Sathe, and Dake Liu, ”Network on chip simulations for
benchmarking”, Proceedings of the International workshop on SoC for real-time
applications, Banff, Canada, July 2004.

8. Nikolay Kavaldjiev, Gerard J. M. Smit, Pierre G. Jansen ” A Virtual Channel Router
for On-chip Networks”, Proceedings of IEEE International SOC Conference, Santa
ClaraSep, California, 2004

9. The network simulator - NS-2, http://www.isi.edu/nsnam/ns/

	Introduction
	Related Work
	Architecture
	Simulation
	Modeling Simulation Parameters
	Simulation Experiment

	Results
	Random Traffic Model
	Local Traffic Model

	Conclusion
	Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

