Understanding Smartphone Usage

Hossein Falaki, Ratul Mahajan, Srikanth Kandula, Dimitrios Lymberopoulos, Ramesh Govnidan, Deborah Estrin UCLA, Microsoft, USC

Motivation: How do people use their smartphones?

Many basic facts on smartphone usage are unknown:

- How often does a user interact with the phone? How long is 1. each interaction?
- How many applications does a user run and how is her 2. attention spread across them?
- How much network traffic is generated? 3.
- What limits network performance on smartphones? 4.

Why do these questions matter?

- Assessing effectiveness of existing mechanisms to save 1. energy and improve performance
- Proposing new resource management mechanisms based on 2. better understanding of usage
- Guiding future smartphone hardware/software design 3.

Datasets: Measured on the phones

Dataset1:

Dataset2:

33 Android users with unlimited voice, • 222 Windows Mobile users with voice

Dataset3:

8 Windows Mobile and 2 Android users

- text, and data plans
- Recorded screen events, call events, application interaction times, application network traffic
- 7-21 weeks of data per user (9 weeks average)
- and unlimited data
- Start and end time of application invocations were recorded
- 8-22 weeks of data per users (16 weeks average)
- with unlimited voice and data plans
- Packet level traces, including link layer headers were logged
 - 4-12 weeks of data per user (7 weeks average)

Diversity: Quantitative diversity among users

Interactions and resource consumption:

Significant diversity in interaction and resource consumption

User interactions and resource consumption have strong diurnal patterns

Applications:

Close to 90% of sessions include only one application.

Smartphones are primarily communication devices

Network performance

- Most of the transfers are small therefore overhead of lower layer protocols is significant. (CDF) 80 100 (CDF) 80 1 ШО 80 <u>U</u> of transfers 20 40 60 transfers 40 60 of transfers 60 40 20 of 20 Downlink TCP+ TCP+ SSL+ % Uplink SSL+ % % 0 0 0 1000 80 100 100 20 80 100 0.0 20 60 40 60 40 Transfer size (KB) Bytes (%) Time (%)
- Most TCP connections are limited by loss and server send windows

Limit	Uplink (%)	Downlink (%)
Packet loss	81.0	61.5
Sender window	4.1	27.4
Receiver window	6.8	3.4
Bandwidth	5.1	2.9
Transport	0.7	0.0
Unknown	2.4	4.8

Towards Modeling Usage: Qualitative similarities among users

A mixture of Exponential and shifted Pareto distributions explains session lengths 20

For each user application popularity drops exponentially

