
SparkR Under the Hood

Hossein Falaki
June 2017

How to debug your SparkR code

About me

• Software Engineer at Databricks Inc.
• Data Scientist at Apple Siri
• Started using Spark since 0.6
• Developed first version of Apache Spark CSV data source
• Developed Databricks R Notebooks
• Currently focusing on R experience at Databricks

About Databricks

TEAM	
Started Spark project (now Apache Spark) at UC Berkeley in 2009	

MISSION	

Making Big Data Simple	

PRODUCT	
Unified Analytics Platform	

	
	

What this talk IS What this talk is NOT

About this talk

•  Introduction to SparkR API
•  Introducing new features
•  How to use SparkR

•  SparkR architecture
•  SparkR implementation
•  Common performance bottlenecks
•  Common sources of error
•  How to debug your code

Outline

• Architecture
•  Implementation
• Limitations
• Common errors and problems
• How to debug your code

What is SparkR

R package distributed with Apache Spark
•  Provides R front-end to Apache Spark
•  Exposes Spark DataFrames (inspired by R & Pandas)
•  Convenient interoperability between R and Spark DataFrames

robust	distributed		
processing,	data	source,	off-

memory	data		

dynamic	environment,	
interac6vity,	+10K	packages,	

visualiza6ons	
+

SparkR architecture
Spark Driver

JVM

Worker

JVM

Worker

Data	Sources	
 JVM R

R Backend

	JVM

SparkR architecture (2.x)
Spark Driver

JVM

Worker

JVM

Worker

Data Sources
							JVM R

R Backend

R	 R	

R	 R	

Driver implementation

1. RBackend opens a server port and
waits for connections

4. RBackendHandler handles and
process requests

2. SparkR establishes socket
connections

3. Each SparkR call sends serialized
data over the socket and waits for
response

R JVM
Backend

SparkR Serialization

R JVM
Backend

R and JVM use a proprietary serialization format as wire protocol.

Basic type type binary data

Lists type element 1, size element 2, element 3, ...

A simple SparkR query

1. serialize method
name + arguments

2. Send to backend
3. de-serialize

4. find Spark method

5. invoke method

6. serialize returned
value

8. de-serialize and
return result to user

R JVM

7. Send to R process

What can go wrong?

1. serialize method
name + arguments

2. Send to backend
3. de-serialize

4. find Spark method

5. invoke method

6. serialize returned
value

8. de-serialize and
return result to user

R JVM

7. Send to R process

Serialization & deserialization

Memory allocation in R
Error in writeBin(batch, con, endian = “big”)

 attempting to add too many elements to raw vector

De-serialization in JVM
ERROR Executor: Exception in task 0.0 in stage 1.0 (TID 1)
java.lang.NegativeArraySizeException
org.apache.spark.api.r.SerDe$.readStringBytes(SerDe.scala:110)

at org.apache.spark.api.r.SerDe$.readString(SerDe.scala:
119)

Serialization & deserialization
Corner case with types
Lost task 0.3 in stage 52.0 (TID 10114, 10.0.229.211):
java.lang.RuntimeException: java.lang.Double is not a valid
external type for schema of date

org.apache.spark.SparkException: Job aborted due to stage
failure:

java.lang.IllegalArgumentException
at
java.sql.Date.valueOf(Date.java:143)
at
org.apache.spark.api.r.SerDe$.readDate(SerDe.scala:128)
at
org.apache.spark.api.r.SerDe$.readTypedObject(SerDe.scala:77)

Corner case with types

Method signature matching and invocation

RBackendHandler: dfToCols on
org.apache.spark.sql.api.r.SQLUtils failed

java.lang.Exception: No matched method found for class
org.apache.spark.sql.api.r.SQLUtils.dfToCols

A complex SparkR query

R Worker JVM R Driver JVM

1. serialize R closure

4. transfer over
 local socket

7. serialize result

2. transfer over
 local socket

8. transfer over
 local socket

10. transfer over
 local socket

11. de-serialize result

9. Transfer serialized closure over the network

3. Transfer serialized closure over the network

5. de-serialize closure

6. Execution

A complex SparkR query

R Worker JVM R Driver JVM

1. serialize R closure

4. transfer over
 local socket

7. serialize result

2. transfer over
 local socket

8. transfer over
 local socket

10. transfer over
 local socket

11. de-serialize result

9. Transfer serialized closure over the network

3. Transfer serialized closure over the network

5. de-serialize closure

6. Execution

Common problems when using UDFs

• Skew in data
•  Are partitions evenly sized?

• Packing too much data in the closure
• Auxiliary data
•  Can be joined with input DataFrame
•  Can be distributed to all the workers

• Returned data schema

Practical guide to debug
SparkR code

Get used to reading Java stack traces

• Often the root cause is at the bottom of the stack trace
• Stack trace includes both driver and executor exceptions
•  In many cases the R worker error is included in the exception

message

data.frame vs. DataFrame

•  ... doesn't know how to deal with data of class
SparkDataFrame

•  no method for coercing this S4 class to a ...

•  Expressions other than filtering predicates are not
supported in the first parameter of extract operator.

R function vs. SparkSQL expression

Expressions translate to JVM calls, but functions run in R process of
driver or workers

•  filter(logs$type ==
“ERROR”)

•  ifelse(df$level > 2,
“deep”, “shallow”)

•  dapply(logs, function(x) {

 subset(x, type == “ERROR”)

}, schema(logs))

Special characters in schema names

•  ‘.’ is a special character in Spark

•  Sometimes SparkR automatically converts ‘.’ to ‘_’ in
column names

In FUN(X[[i]], ...) :

 Use Sepal_Length instead of Sepal.Length as column
name

•  Sometimes, names are not transformed and you may end
up with ‘.’ in column names

Packing too much into the closure

Error in invokeJava(isStatic = FALSE, objId$id,
methodName, ...):

 org.apache.spark.SparkException: Job aborted due to stage
failure: Serialized task 29877:0 was 520644552 bytes, which
exceeds max allowed: spark.rpc.message.maxSize (268435456
bytes).

Workers returning empty results

Job aborted due to stage failure:
java.lang.ArrayIndexOutOfBoundsException

Driver stacktrace:
at
org.apache.spark.scheduler.DAGScheduler.org$apache$spark
$scheduler$DAGScheduler$
$failJobAndIndependentStages(DAGScheduler.scala:1435)

...

Caused by: java.lang.ArrayIndexOutOfBoundsException

Try Apache Spark in Databricks!

DATABRICKS RUNTIME 3.0
Apache Spark - optimized for the cloud
Caching and optimization layer - DBIO
Enterprise security – DBES
Support for sparklyr

UNIFIED ANALYTICS PLATFORM
Collaborative cloud environment
Free version (community edition)

	 Try for free today.
databricks.com	
	
	

Thank You
Hossein Falaki @mhfalaki

