
Parallelizing Existing R
Packages with SparkR

Hossein Falaki
@mhfalaki

About me

• Former Data Scientist at Apple Siri
• Software Engineer at Databricks
• Started using Apache Spark since version 0.6
• Developed first version of Apache Spark CSV data source
• Worked on SparkR &Databricks R Notebook feature
• Currently focusing on R experience at Databricks

2

What is SparkR?

An R package distributed with Apache Spark:
- Provides R frontend to Spark
- Exposes Spark DataFrames (inspired by R and Pandas)
- Convenient interoperability between R and Spark DataFrames

3

distributed/robust processing, data
sources, off-memory data
structures

+	 Dynamic environment, interactivity,
packages, visualization

SparkR architecture

4

Spark	Driver	

							JVM	R	

R	Backend	

JVM	

Worker	

JVM	

Worker	

Data	Sources	
	JVM	

SparkR architecture (since 2.0)

5

Spark	Driver	

R	 							JVM	

R	Backend	

JVM	

Worker	

JVM	

Worker	

Data	Sources	
R	

R	

Overview of SparkR API

IO
read.df / write.df /

createDataFrame / collect

Caching
cache / persist / unpersist /

cacheTable / uncacheTable

SQL

sql / table / saveAsTable /

registerTempTable / tables

6

ML Lib
glm / kmeans / Naïve Bayes

Survival regression

DataFrame API
select / subset / groupBy /

head / avg / column / dim

UDF functionality (since 2.0)
spark.lapply / dapply /

gapply / dapplyCollect

http://spark.apache.org/docs/latest/api/R/

SparkR UDF API

7

spark.lapply
Runs a function over
a list of elements

spark.lapply()

dapply
Applies a function to
each partition of a
SparkDataFrame

dapply()

dapplyCollect()

gapply
Applies a function to
each group within a
SparkDataFrame

gapply()

gapplyCollect()

spark.lapply

8

Simplest SparkR UDF pattern
For each element of a list:

1.  Sends the function to an R worker
2.  Executes the function
3.  Returns the result of all workers as a list to R driver

spark.lapply(1:100, function(x) {
 runBootstrap(x)
}

spark.lapply control flow

9

R	Worker	JVM	
R	Worker	JVM	
R	Worker	JVM	R	 Driver	JVM	

1.	Serialize	R	closure	

3.	Transfer	serialized	closure	over	the	network	

5.	De-serialize	closure	

4.	Transfer	over	
						local	socket	

6.	Serialize	result	

2.	Transfer	over	
					local	socket	

7.	Transfer	over	
						local	socket	9.	Transfer	over	

					local	socket	

10.	Deserialize	result	

8.	Transfer	serialized	closure	over	the	network	

dapply

10

For each partition of a Spark DataFrame
1.  collects each partition as an R data.frame
2.  sends the R function to the R worker
3.  executes the function

dapply(sparkDF, func, schema)

combines results as DataFrame
with provided schema

dapplyCollect(sparkDF, func)

combines results as R
data.frame

dapply control & data flow

11

R	Worker	JVM	
R	Worker	JVM	
R	Worker	JVM	R	 Driver	JVM	

local socket cluster network local socket

input data

ser/de transfer

result data

ser/de transfer

dapplyCollect control & data flow

12

R	Worker	JVM	
R	Worker	JVM	
R	Worker	JVM	R	 Driver	JVM	

local socket cluster network local socket

input data

ser/de transfer

result transfer result deser

gapply

13

Groups a Spark DataFrame on one or more columns
1.  collects each group as an R data.frame
2.  sends the R function to the R worker
3.  executes the function

gapply(sparkDF, cols, func, schema)

combines results as DataFrame
with provided schema

gapplyCollect(sparkDF, cols, func)

combines results as R
data.frame

gapply control & data flow

14

R	Worker	JVM	
R	Worker	JVM	
R	Worker	JVM	R	 Driver	JVM	

local socket cluster network local socket

input data

ser/de transfer

result data

ser/de transfer

data

shuffle

dapply vs. gapply

15

gapply	 dapply	

signature	 gapply(df, cols, func, schema)
gapply(gdf, func, schema)	
	

dapply(df, func, schema)	

user	func2on	
signature	

function(key, data)	 function(data)	

data	par22on	 controlled	by	grouping	 not	controlled	

Parallelizing data

• Do not use spark.lapply() to distribute large data sets
• Do not pack data in the closure
• Watch for skew in data

– Are partitions evenly sized?

• Auxiliary data
– Can be joined with input DataFrame
– Can be distributed to all the workers

16

Packages on workers

• SparkR closure capture does not include packages
• You need to import packages on each worker inside your

function
•  If not installed install packages on workers out-of-band
•  spark.lapply() can be used to install packages

17

Debugging user code

1.  Verify your code on the Driver
2.  Interactively execute the code on the cluster

–  When R worker fails, Spark Driver throws exception with the R error text

3.  Inspect details of failure reason of failed job in spark UI
4.  Inspect stdout/stderror of workers

18

Demo
19

hMp://bit.ly/2krYMwC	
hMp://bit.ly/2ltLVKs	

Thank you!

