
Enabling Exploratory Data
Science with Spark and R

Shivaram Venkataraman, Hossein Falaki (@mhfalaki)

About Apache Spark, AMPLab and Databricks

Apache Spark is a general distributed computing engine that unifies:
•  Real-time streaming (Spark Streaming)
•  Machine learning (SparkML/MLLib)
•  SQL (SparkSQL)
•  Graph processing (GraphX)

AMPLab (Algorithms, Machines, and Peoples lab) at UC Berkeley was where Spark and SparkR
were developed originally.

Databricks Inc. is the company founded by creators of Spark, focused on making big data

simple by offering an end to end data processing platform in the cloud
2

What is R?

Language and runtime

The corner stone of R is the

data frame concept

3

Many data scientists love R

4

•  Open source
•  Highly dynamic
•  Interactive environment
•  Rich ecosystem of packages
•  Powerful visualization infrastructure
•  Data frames make data manipulation convenient
•  Taught by many schools to stats and computing students

Performance Limitations of R

R language
•  R’s dynamic design imposes restrictions on optimization

R runtime
•  Single threaded
•  Everything has to fit in memory

5

What would be ideal?

Seamless manipulation and analysis of very large data in R
•  R’s flexible syntax
•  R’s rich package ecosystem
•  R’s interactive environment
•  Scalability (scale up and out)
•  Integration with distributed data sources / storage

6

Augmenting R with other frameworks

In practice data scientists use R in conjunction with other frameworks
(Hadoop MR, Hive, Pig, Relational Databases, etc)

7

Framework	X	
(Language	Y)	

Distributed	
Storage	

1.	Load,	clean,	transform,	aggregate,	sample	

Local	
Storage	

2.	Save	to	local	storage	 3.	Read	and	analyze	in	R	
Iterate	

What is SparkR?

An R package distributed with Apache Spark:
•  Provides R frontend to Spark
•  Exposes Spark Dataframes (inspired by R and Pandas)
•  Convenient interoperability between R and Spark DataFrames

8

+	distributed/robust	processing,	data	
sources,	off-memory	data	structures	

Spark	

Dynamic	environment,	interacJvity,	
packages,	visualizaJon	

R	

How does SparkR solve our problems?

No local storage involved
Write everything in R
Use Spark’s distributed cache for interactive/iterative analysis at

speed of thought
9

Local	
Storage	

2.	Save	to	local	storage	 3.	Read	and	analyze	in	R	

Framework	X	
(Language	Y)	

Distributed	
Storage	

1.	Load,	clean,	transform,	aggregate,	sample	

Iterate	

Example SparkR program

Loading distributed data

df <- read.df(“hdfs://bigdata/logs”, source = “json”)

Distributed filtering and aggregation

errors <- subset(df, df$type == “error”)

counts <- agg(groupBy(errors, df$code), num = count(df$code))

Collecting and plotting small data

qplot(code, num, data = collect(counts), geom = “bar”, stat =

“identity”) + coord_flip()

10

SparkR architecture

11

Spark	Driver	

R	 							JVM	

R	Backend	

JVM	

Worker	

JVM	

Worker	

Data	Sources	

Overview of SparkR API

IO
•  read.df / write.df

•  createDataFrame / collect

Caching
•  cache / persist / unpersist

•  cacheTable / uncacheTable

Utility functions
•  dim / head / take

•  names / rand / sample / ...

12

ML Lib
•  glm / predict

DataFrame API
select / subset / groupBy

head / showDF /unionAll

agg / avg / column / ...

SQL

sql / table / saveAsTable

registerTempTable / tables

Moving data between R and JVM

13

R	 							JVM	

R	Backend	
SparkR::collect()	

SparkR::createDataFrame()	

Moving data between R and JVM

14

R	 							JVM	

R	Backend	

JVM	

Worker	

JVM	

Worker	

HDFS/S3/…	

FUSE	

read.df()	
write.df()	

Moving between languages

15

R Scala

Spark	

df <- read.df(...)

wiki <- filter(df, ...)

registerTempTable(wiki,
“wiki”)

val wiki = table(“wiki”)

val parsed = wiki.map {

 Row(_, _, text: String,
_, _) =>text.split(‘ ’)

}

val model =
Kmeans.train(parsed)

Mixing R and SQL

Pass a query to SQLContext and get the result back as a DataFrame

16

Register DataFrame as a table

registerTempTable(df, “dataTable”)

Complex SQL query, result is returned as another DataFrame

aggCount <- sql(sqlContext, “select count(*) as num, type, date

group by type order by date desc”)

qplot(date, num, data = collect(aggCount), geom = “line”)

SparkR roadmap and upcoming features

•  Exposing MLLib functionality in SparkR
•  GLM already exposed with R formula support

•  UDF support in R
•  Distribute a function and data
•  Ideal way for distributing existing R functionality and packages

•  Complete DataFrame API to behave/feel just like data.frame

17

Example use case: exploratory analysis

•  Data pipeline implemented in Scala/Python
•  New files are appended to existing data partitioned by time
•  Table scheme is saved in Hive metastore
•  Data scientists use SparkR to analyze and visualize data

1.  refreshTable(sqlConext, “logsTable”)

2.  logs <- table(sqlContext, “logsTable”)

3.  Iteratively analyze/aggregate/visualize using Spark & R DataFrames
4.  Publish/share results

18

Demo

19

How to get started with SparkR?

•  On your computer
1.  Download latest version of Spark (1.5.2)
2.  Build (maven or sbt)
3.  Run ./install-dev.sh inside the R directory
4.  Start R shell by running ./bin/sparkR

•  Deploy Spark (1.4+) on your cluster
•  Sign up for 14 days free trial at Databricks

20

Summary

1.  SparkR is an R frontend to Apache Spark
2.  Distributed data resides in the JVM
3.  Workers are not running R process (yet)
4.  Distinction between Spark DataFrames and R data frames

21

Further pointers

http://spark.apache.org
http://www.r-project.org
http://www.ggplot2.org
https://cran.r-project.org/web/packages/magrittr
www.databricks.com

Office hour: 13-14 Databricks Booth

22

Thank you

