Numerical Computing with Spark

Hossein Falaki

Challenges of numerical computation over big data

When applying any algorithm to big data watch for

- 1. Correctness
- 2. Performance
- 3. Trade-off between accuracy and performance

Three Practical Examples

- Point estimation (Variance)
- Approximate estimation (Cardinality)
- Matrix operations (PageRank)

We use these examples to demonstrate Spark internals, data flow, and challenges of implementing algorithms for Big Data.

1. Big Data Variance

The plain variance formula requires two passes over data

Fast but inaccurate solution

 $Var(X) = E[X^{2}] - E[X]^{2}$ $=\frac{\sum x^2}{N} - \left(\frac{\sum x}{N}\right)^2$

Can be performed in a single pass, but

Subtracts two very close and large numbers!

Accumulator Pattern

An object that incrementally tracks the variance

```
Class RunningVar {
  var variance: Double = 0.0
  // Compute initial variance for numbers
  def this(numbers: Iterator[Double]) {
    numbers.foreach(this.add())
  // Update variance for a single value
  def add(value: Double) {
```

Parallelize for performance

- Distribute adding values in map phase
- Merge partial results in reduce phase

```
Class RunningVar {
    ...
    // Merge another RunningVar object
    // and update variance
    def merge(other: RunningVar) = {
        ...
    }
}
```

Computing Variance in Spark

• Use the RunningVar in Spark

```
doubleRDD
.mapPartitions(v => Iterator(new RunningVar(v)))
.reduce((a, b) => a.merge(b))
```

• Or simply use the Spark API

```
doubleRDD.variance()
```

2. Approximate Estimations

- Often an approximate estimate is *good enough* especially if it can be computed faster or cheaper
 - 1. Trade accuracy with memory
 - 2. Trade accuracy with running time
- We really like the cases where there is a bound on error that can be controlled

Cardinality Problem

Example: Count number of unique words in Shakespeare's work.

- Using a HashSet requires ~10GB of memory
- This can be much worse in many real world applications involving large strings, such as counting web visitors

Linear Probabilistic Counting

- 1. Allocate a bitmap of size m and initialize to zero.
 - A. Hash each value to a position in the bitmap
 - B. Set corresponding bit to 1
- 2. Count number of empty bit entries: v

$$count \approx -m\ln\frac{v}{m}$$

The Spark API

• Use the LogLinearCounter in Spark

```
rdd
.mapPartitions(v => Iterator(new LPCounter(v)))
.reduce((a, b) => a.merge(b)).getCardinality
```

• Or simply use the Spark API

myRDD.countApproxDistinct(0.01)

3. Google PageRank

Popular algorithm originally introduced by Google

PageRank Algorithm

PageRank Algorithm

- Start each page with a rank of 1
- On each iteration:

A. $contrib = \frac{curRank}{|neighbors|}$

B.
$$curRank = 0.15 + 0.85 \sum_{neighbors} contrib_i$$

DATABRICKS

PageRank as Matrix Multiplication

- Rank of each page is the probability of landing on that page for a random surfer on the web
- Probability of visiting all pages after k steps is

$$V_k = A^k \times V^t$$

V: the initial rank vectorA: the link structure (sparse matrix)

Data Representation in Spark

- Each page is identified by its unique URL rather than an index
- Ranks vectors (V): RDD[(URL, Double)]
- Links matrix (A): RDD[(URL, List(URL))]

Spark Implementation

```
val links = // load RDD of (url, neighbors) pairs
var ranks = // load RDD of (url, rank) pairs
for (i <- 1 to ITERATIONS) {
  val contribs = links.join(ranks).flatMap {
    case (url, (links, rank)) =>
      links.map(dest => (dest, rank/links.size))
  ranks = contribs.reduceByKey( + )
    .mapValues(0.15 + 0.85 *)
ranks.saveAsTextFile(...)
```

Matrix Multiplication

Repeatedly multiply sparse matrix and vector

Spark can do much better

- Using cache(), keep neighbors in memory
- Do not write intermediate results on disk

Spark can do much better

• Do not partition neighbors every time

Spark Implementation

```
val links = // load RDD of (url, neighbors) pairs
var ranks = // load RDD of (url, rank) pairs
```

```
links.partitionBy(hashFunction).cache()
```

```
for (i <- 1 to ITERATIONS) {
  val contribs = links.join(ranks).flatMap {
    case (url, (links, rank)) =>
        links.map(dest => (dest, rank/links.size))
    }
    ranks = contribs.reduceByKey(_ + _)
    .mapValues(0.15 + 0.85 * _)
}
ranks.saveAsTextFile(...)
```

Conclusions

When applying any algorithm to big data watch for

- 1. Correctness
- 2. Performance
 - Cache RDDs to avoid I/O
 - Avoid unnecessary computation
- 3. Trade-off between accuracy and performance

Numerical Computing with Spark

